diff options
author | Tim Dettmers <tim.dettmers@gmail.com> | 2021-10-21 10:20:41 -0700 |
---|---|---|
committer | Tim Dettmers <tim.dettmers@gmail.com> | 2021-10-21 10:20:41 -0700 |
commit | eaf35ab9499fda4348f9df9c8a190c104884986c (patch) | |
tree | 145d5fd80cb657df2328c7f7c1d2644b812edb68 | |
parent | d06c5776e47272fea23a8a23b32733668eec8d37 (diff) |
Copied over Analysis Adam.
-rw-r--r-- | bitsandbytes/optim/adam.py | 199 |
1 files changed, 199 insertions, 0 deletions
diff --git a/bitsandbytes/optim/adam.py b/bitsandbytes/optim/adam.py index 99a6d10..f00e5db 100644 --- a/bitsandbytes/optim/adam.py +++ b/bitsandbytes/optim/adam.py @@ -26,3 +26,202 @@ class Adam32bit(Optimizer2State): weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise) + +class AnalysisAdam(torch.optim.Optimizer): + """Implements 8-bit Adam and performs error analysis. + + This implementation is modified from torch.optim.Adam based on: + `Fixed Weight Decay Regularization in Adam` + (see https://arxiv.org/abs/1711.05101) + + It has been proposed in `Adam: A Method for Stochastic Optimization`_. + + Arguments: + params (iterable): iterable of parameters to optimize or dicts defining + parameter groups + lr (float, optional): learning rate (default: 1e-3) + betas (Tuple[float, float], optional): coefficients used for computing + running averages of gradient and its square (default: (0.9, 0.999)) + eps (float, optional): term added to the denominator to improve + numerical stability (default: 1e-8) + weight_decay (float, optional): weight decay (L2 penalty) (default: 0) + amsgrad (boolean, optional): whether to use the AMSGrad variant of this + algorithm from the paper `On the Convergence of Adam and Beyond`_ + + .. _Adam\: A Method for Stochastic Optimization: + https://arxiv.org/abs/1412.6980 + .. _On the Convergence of Adam and Beyond: + https://openreview.net/forum?id=ryQu7f-RZ + """ + + def __init__( + self, + params, + lr=1e-3, + betas=(0.9, 0.999), + eps=1e-8, + weight_decay=0, + amsgrad=False, + bnb_analysis='dynamic-blockwise', + savedir=None + ): + defaults = dict( + lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad + ) + super(AnalysisAdam, self).__init__(params, defaults) + self.analysis = bnb_analysis + self.savedir = savedir + + @property + def supports_memory_efficient_fp16(self): + return True + + @property + def supports_flat_params(self): + return True + + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + loss = closure() + + for group in self.param_groups: + for p_id, p in enumerate(group["params"]): + if p.grad is None: + continue + grad = p.grad.data + if grad.dtype in {torch.float16, torch.bfloat16}: + grad = grad.float() + if grad.is_sparse: + raise RuntimeError( + "Adam does not support sparse gradients, please consider SparseAdam instead" + ) + amsgrad = group.get("amsgrad", False) + assert not amsgrad + + p_data_fp32 = p.data + if p.data.dtype in {torch.float16, torch.bfloat16}: + p_data_fp32 = p_data_fp32.float() + + state = self.state[p] + + # State initialization + if len(state) == 0: + state["step"] = 0 + # Exponential moving average of gradient values + state["exp_avg"] = torch.zeros_like(p_data_fp32) + # Exponential moving average of squared gradient values + state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) + state['abserrors'] = torch.zeros((256, 256), device=p_data_fp32.device) + state['relerrors'] = torch.zeros((256, 256), device=p_data_fp32.device) + state['counts'] = torch.zeros((256, 256), device=p_data_fp32.device) + if amsgrad: + # Maintains max of all exp. moving avg. of sq. grad. values + state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32) + else: + state["exp_avg"] = state["exp_avg"].to(p_data_fp32) + state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) + if amsgrad: + state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to( + p_data_fp32 + ) + + state["step"] += 1 + beta1, beta2 = group["betas"] + bias_correction1 = 1 - beta1 ** state["step"] + bias_correction2 = 1 - beta2 ** state["step"] + step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 + e = state['abserrors'] + rele = state['relerrors'] + counts = state['counts'] + + if group["weight_decay"] != 0: + p_data_fp32.add_( + p_data_fp32, alpha=-group["weight_decay"] * group["lr"] + ) + + exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] + if amsgrad: + max_exp_avg_sq = state["max_exp_avg_sq"] + + + # Decay the first and second moment running average coefficient + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + + denom = exp_avg_sq.sqrt().add_(group["eps"]) + update_fp32 = exp_avg/denom + + if p_data_fp32.numel() <= 8192 or p_data_fp32.numel() > 50000*1000: + # embedding layer or too small + p_data_fp32 += -step_size*update_fp32 + else: + if self.analysis == 'dynamic-blockwise': + code1 = F.create_dynamic_map(signed=True).to(p.device) + code2 = F.create_dynamic_map(signed=False).to(p.device) + C1, S1 = F.quantize_blockwise(exp_avg, code=code1) + state1 = F.dequantize_blockwise(C1, S1) + C2, S2 = F.quantize_blockwise(exp_avg_sq, code=code2) + state2 = F.dequantize_blockwise(C2, S2) + elif self.analysis == 'dynamic': + code1 = F.create_dynamic_map(signed=True).to(p.device) + code2 = F.create_dynamic_map(signed=False).to(p.device) + C1, S1 = F.quantize(exp_avg, code=code1) + state1 = F.dequantize(C1, S1) + C2, S2 = F.quantize(exp_avg_sq, code=code2) + state2 = F.dequantize(C2, S2) + elif self.analysis == 'linear': + code1 = F.create_linear_map(signed=True).to(p.device) + code2 = F.create_linear_map(signed=False).to(p.device) + C1, S1 = F.quantize(exp_avg, code=code1) + state1 = F.dequantize(C1, S1) + C2, S2 = F.quantize(exp_avg_sq, code=code2) + state2 = F.dequantize(C2, S2) + elif self.analysis == 'quantile': + code1 = F.estimate_quantiles(exp_avg) + code2 = F.estimate_quantiles(exp_avg_sq) + C1 = F.quantize_no_absmax(exp_avg, code=code1) + state1 = F.dequantize_no_absmax(C1, code1) + C2 = F.quantize_no_absmax(exp_avg_sq, code=code2) + state2 = F.dequantize_no_absmax(C2, code2) + else: + raise ValueError(f'Invalid analysis value: {self.analysis}!') + + denom = state2.sqrt().add_(group["eps"]) + update_8bit = state1/denom + + abserr = torch.abs(update_8bit-update_fp32) + relerr = abserr/torch.abs(update_fp32+1e-6) + + C1, C2 = C1.int(), C2.int() + + F.histogram_scatter_add_2d(e, C1.int(), C2.int(), abserr) + F.histogram_scatter_add_2d(rele, C1.int(), C2.int(), relerr) + F.histogram_scatter_add_2d(counts, C1.int(), C2.int(), torch.ones_like(abserr)) + + p_data_fp32 += -step_size*update_fp32 + + + if not dist.is_initialized() or dist.get_rank() == 0: + if self.savedir != '' and state['step'] % 100 == 0: + if not os.path.exists(self.savedir): os.makedirs(self.savedir) + shapestr = '_'.join([str(dim) for dim in p_data_fp32.shape]) + pathe = join(self.savedir, f'{p_id}_{shapestr}_abserr.pkl') + pathrele = join(self.savedir, f'{p_id}_{shapestr}_relerr.pkl') + pathcounts = join(self.savedir, f'{p_id}_{shapestr}_counts.pkl') + torch.save(e, pathe) + torch.save(rele, pathrele) + torch.save(counts, pathcounts) + + if p.data.dtype in {torch.float16, torch.bfloat16}: + p.data.copy_(p_data_fp32) + + + + return loss |