summaryrefslogtreecommitdiff
path: root/bitsandbytes/cuda_setup
diff options
context:
space:
mode:
authorTitus von Koeller <titus@vonkoeller.com>2022-08-02 07:42:27 -0700
committerTitus von Koeller <titus@vonkoeller.com>2022-08-02 07:42:27 -0700
commit3809236428e704f9a7e22232701a651aafa5ca1b (patch)
tree9a666897861e5a9482c2a5fb39c018d79ae57a28 /bitsandbytes/cuda_setup
parente120c4a5503ee0410a705019ff3221e88d033c74 (diff)
move cuda_setup code into subpackage
Diffstat (limited to 'bitsandbytes/cuda_setup')
-rw-r--r--bitsandbytes/cuda_setup/__init__.py0
-rw-r--r--bitsandbytes/cuda_setup/compute_capability.py65
-rw-r--r--bitsandbytes/cuda_setup/main.py173
3 files changed, 238 insertions, 0 deletions
diff --git a/bitsandbytes/cuda_setup/__init__.py b/bitsandbytes/cuda_setup/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/bitsandbytes/cuda_setup/__init__.py
diff --git a/bitsandbytes/cuda_setup/compute_capability.py b/bitsandbytes/cuda_setup/compute_capability.py
new file mode 100644
index 0000000..19ceb3b
--- /dev/null
+++ b/bitsandbytes/cuda_setup/compute_capability.py
@@ -0,0 +1,65 @@
+import ctypes
+from dataclasses import dataclass, field
+
+
+CUDA_SUCCESS = 0
+
+@dataclass
+class CudaLibVals:
+ # code bits taken from
+ # https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
+
+ nGpus = ctypes.c_int()
+ cc_major = ctypes.c_int()
+ cc_minor = ctypes.c_int()
+ device = ctypes.c_int()
+ error_str = ctypes.c_char_p()
+ cuda: ctypes.CDLL = field(init=False, repr=False)
+ ccs: List[str, ...] = field(init=False)
+
+ def load_cuda_lib(self):
+ """
+ 1. find libcuda.so library (GPU driver) (/usr/lib)
+ init_device -> init variables -> call function by reference
+ """
+ libnames = ("libcuda.so")
+ for libname in libnames:
+ try:
+ self.cuda = ctypes.CDLL(libname)
+ except OSError:
+ continue
+ else:
+ break
+ else:
+ raise OSError("could not load any of: " + " ".join(libnames))
+
+ def check_cuda_result(self, result_val):
+ """
+ 2. call extern C function to determine CC
+ (see https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
+ """
+ cls_fields: Tuple[Field, ...] = fields(self.__class__)
+
+ if result_val != 0:
+ self.cuda.cuGetErrorString(result_val, ctypes.byref(self.error_str))
+ print("Count not initialize CUDA - failure!")
+ raise Exception("CUDA exception!")
+ return result_val
+
+ def __post_init__(self):
+ self.load_cuda_lib()
+ self.check_cuda_result(self.cuda.cuInit(0))
+ self.check_cuda_result(self.cuda, self.cuda.cuDeviceGetCount(ctypes.byref(self.nGpus)))
+ tmp_ccs = []
+ for gpu_index in range(self.nGpus.value):
+ check_cuda_result(
+ self.cuda, self.cuda.cuDeviceGet(ctypes.byref(self.device), gpu_index)
+ )
+ check_cuda_result(
+ self.cuda,
+ self.cuda.cuDeviceComputeCapability(
+ ctypes.byref(self.cc_major), ctypes.byref(self.cc_minor), self.device
+ ),
+ )
+ tmp_ccs.append(f"{self.cc_major.value}.{self.cc_minor.value}")
+ self.ccs = sorted(tmp_ccs, reverse=True)
diff --git a/bitsandbytes/cuda_setup/main.py b/bitsandbytes/cuda_setup/main.py
new file mode 100644
index 0000000..6d70c92
--- /dev/null
+++ b/bitsandbytes/cuda_setup/main.py
@@ -0,0 +1,173 @@
+"""
+extract factors the build is dependent on:
+[X] compute capability
+ [ ] TODO: Q - What if we have multiple GPUs of different makes?
+- CUDA version
+- Software:
+ - CPU-only: only CPU quantization functions (no optimizer, no matrix multipl)
+ - CuBLAS-LT: full-build 8-bit optimizer
+ - no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`)
+
+alle Binaries packagen
+
+evaluation:
+ - if paths faulty, return meaningful error
+ - else:
+ - determine CUDA version
+ - determine capabilities
+ - based on that set the default path
+"""
+
+import ctypes
+import os
+from pathlib import Path
+from typing import Set, Union
+
+from ..utils import print_err, warn_of_missing_prerequisite, execute_and_return
+
+
+def check_cuda_result(cuda, result_val):
+ # 3. Check for CUDA errors
+ if result_val != 0:
+ error_str = ctypes.c_char_p()
+ cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
+ raise Exception(f"CUDA exception! ERROR: {error_str}")
+
+
+# taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
+def get_compute_capability():
+ # 1. find libcuda.so library (GPU driver) (/usr/lib)
+ # init_device -> init variables -> call function by reference
+ # 2. call extern C function to determine CC
+ # (https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
+ # 3. Check for CUDA errors
+ # https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
+
+ # 1. find libcuda.so library (GPU driver) (/usr/lib)
+ libnames = ("libcuda.so",)
+ for libname in libnames:
+ try:
+ cuda = ctypes.CDLL(libname)
+ except OSError:
+ continue
+ else:
+ break
+ else:
+ raise OSError("could not load any of: " + " ".join(libnames))
+
+ nGpus = ctypes.c_int()
+ cc_major = ctypes.c_int()
+ cc_minor = ctypes.c_int()
+
+ result = ctypes.c_int()
+ device = ctypes.c_int()
+
+ check_cuda_result(cuda, cuda.cuInit(0))
+
+ check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
+ ccs = []
+ for i in range(nGpus.value):
+ check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
+ ref_major = ctypes.byref(cc_major)
+ ref_minor = ctypes.byref(cc_minor)
+ # 2. call extern C function to determine CC
+ check_cuda_result(cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device))
+ ccs.append(f"{cc_major.value}.{cc_minor.value}")
+
+ # TODO: handle different compute capabilities; for now, take the max
+ ccs.sort()
+ max_cc = ccs[-1]
+ return max_cc
+
+
+CUDA_RUNTIME_LIB: str = "libcudart.so"
+
+
+def tokenize_paths(paths: str) -> Set[Path]:
+ return {Path(ld_path) for ld_path in paths.split(":") if ld_path}
+
+
+def resolve_env_variable(env_var):
+ '''Searches a given envirionmental library or path for the CUDA runtime library (libcudart.so)'''
+ paths: Set[Path] = tokenize_paths(env_var)
+
+ non_existent_directories: Set[Path] = {
+ path for path in paths if not path.exists()
+ }
+
+ if non_existent_directories:
+ print_err(
+ "WARNING: The following directories listed your path were found to "
+ f"be non-existent: {non_existent_directories}"
+ )
+
+ cuda_runtime_libs: Set[Path] = {
+ path / CUDA_RUNTIME_LIB
+ for path in paths
+ if (path / CUDA_RUNTIME_LIB).is_file()
+ } - non_existent_directories
+
+ if len(cuda_runtime_libs) > 1:
+ err_msg = (
+ f"Found duplicate {CUDA_RUNTIME_LIB} files: {cuda_runtime_libs}.."
+ )
+ raise FileNotFoundError(err_msg)
+ elif len(cuda_runtime_libs) == 0: return None # this is not en error, since other envs can contain CUDA
+ else: return next(iter(cuda_runtime_libs)) # for now just return the first
+
+def get_cuda_runtime_lib_path() -> Union[Path, None]:
+ '''Searches conda installation and environmental paths for a cuda installations.'''
+
+ cuda_runtime_libs = []
+ # CONDA_PREFIX/lib is the default location for a default conda
+ # install of pytorch. This location takes priortiy over all
+ # other defined variables
+ if 'CONDA_PREFIX' in os.environ:
+ lib_conda_path = f'{os.environ["CONDA_PREFIX"]}/lib/'
+ print(lib_conda_path)
+ cuda_runtime_libs.append(resolve_env_variable(lib_conda_path))
+
+ if len(cuda_runtime_libs) == 1: return cuda_runtime_libs[0]
+
+ # if CONDA_PREFIX does not have the library, search the environment
+ # (in particualr LD_LIBRARY PATH)
+ for var in os.environ:
+ cuda_runtime_libs.append(resolve_env_variable(var))
+
+ if len(cuda_runtime_libs) < 1:
+ err_msg = (
+ f"Did not find {CUDA_RUNTIME_LIB} files: {cuda_runtime_libs}.."
+ )
+ raise FileNotFoundError(err_msg)
+
+ return cuda_runtime_libs.pop()
+
+
+def evaluate_cuda_setup():
+ cuda_path = get_cuda_runtime_lib_path()
+ print(f'CUDA SETUP: CUDA path found: {cuda_path}')
+ cc = get_compute_capability()
+ binary_name = "libbitsandbytes_cpu.so"
+
+ if not (has_gpu := bool(cc)):
+ print(
+ "WARNING: No GPU detected! Check your CUDA paths. Processing to load CPU-only library..."
+ )
+ return binary_name
+
+ has_cublaslt = cc in ["7.5", "8.0", "8.6"]
+
+ # TODO:
+ # (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
+ # (2) Multiple CUDA versions installed
+
+ cuda_home = str(Path(cuda_path).parent.parent)
+ # we use ls -l instead of nvcc to determine the cuda version
+ # since most installations will have the libcudart.so installed, but not the compiler
+ ls_output, err = execute_and_return(f"ls -l {cuda_path}")
+ major, minor, revision = ls_output.split(' ')[-1].replace('libcudart.so.', '').split('.')
+ cuda_version_string = f"{major}{minor}"
+
+ binary_name = f'libbitsandbytes_cuda{cuda_version_string}{("" if has_cublaslt else "_nocublaslt")}.so'
+
+ return binary_name