summaryrefslogtreecommitdiff
path: root/bitsandbytes
diff options
context:
space:
mode:
authorTim Dettmers <tim.dettmers@gmail.com>2021-10-21 10:20:41 -0700
committerTim Dettmers <tim.dettmers@gmail.com>2021-10-21 10:20:41 -0700
commiteaf35ab9499fda4348f9df9c8a190c104884986c (patch)
tree145d5fd80cb657df2328c7f7c1d2644b812edb68 /bitsandbytes
parentd06c5776e47272fea23a8a23b32733668eec8d37 (diff)
Copied over Analysis Adam.
Diffstat (limited to 'bitsandbytes')
-rw-r--r--bitsandbytes/optim/adam.py199
1 files changed, 199 insertions, 0 deletions
diff --git a/bitsandbytes/optim/adam.py b/bitsandbytes/optim/adam.py
index 99a6d10..f00e5db 100644
--- a/bitsandbytes/optim/adam.py
+++ b/bitsandbytes/optim/adam.py
@@ -26,3 +26,202 @@ class Adam32bit(Optimizer2State):
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
+
+class AnalysisAdam(torch.optim.Optimizer):
+ """Implements 8-bit Adam and performs error analysis.
+
+ This implementation is modified from torch.optim.Adam based on:
+ `Fixed Weight Decay Regularization in Adam`
+ (see https://arxiv.org/abs/1711.05101)
+
+ It has been proposed in `Adam: A Method for Stochastic Optimization`_.
+
+ Arguments:
+ params (iterable): iterable of parameters to optimize or dicts defining
+ parameter groups
+ lr (float, optional): learning rate (default: 1e-3)
+ betas (Tuple[float, float], optional): coefficients used for computing
+ running averages of gradient and its square (default: (0.9, 0.999))
+ eps (float, optional): term added to the denominator to improve
+ numerical stability (default: 1e-8)
+ weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
+ amsgrad (boolean, optional): whether to use the AMSGrad variant of this
+ algorithm from the paper `On the Convergence of Adam and Beyond`_
+
+ .. _Adam\: A Method for Stochastic Optimization:
+ https://arxiv.org/abs/1412.6980
+ .. _On the Convergence of Adam and Beyond:
+ https://openreview.net/forum?id=ryQu7f-RZ
+ """
+
+ def __init__(
+ self,
+ params,
+ lr=1e-3,
+ betas=(0.9, 0.999),
+ eps=1e-8,
+ weight_decay=0,
+ amsgrad=False,
+ bnb_analysis='dynamic-blockwise',
+ savedir=None
+ ):
+ defaults = dict(
+ lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad
+ )
+ super(AnalysisAdam, self).__init__(params, defaults)
+ self.analysis = bnb_analysis
+ self.savedir = savedir
+
+ @property
+ def supports_memory_efficient_fp16(self):
+ return True
+
+ @property
+ def supports_flat_params(self):
+ return True
+
+ def step(self, closure=None):
+ """Performs a single optimization step.
+
+ Arguments:
+ closure (callable, optional): A closure that reevaluates the model
+ and returns the loss.
+ """
+ loss = None
+ if closure is not None:
+ loss = closure()
+
+ for group in self.param_groups:
+ for p_id, p in enumerate(group["params"]):
+ if p.grad is None:
+ continue
+ grad = p.grad.data
+ if grad.dtype in {torch.float16, torch.bfloat16}:
+ grad = grad.float()
+ if grad.is_sparse:
+ raise RuntimeError(
+ "Adam does not support sparse gradients, please consider SparseAdam instead"
+ )
+ amsgrad = group.get("amsgrad", False)
+ assert not amsgrad
+
+ p_data_fp32 = p.data
+ if p.data.dtype in {torch.float16, torch.bfloat16}:
+ p_data_fp32 = p_data_fp32.float()
+
+ state = self.state[p]
+
+ # State initialization
+ if len(state) == 0:
+ state["step"] = 0
+ # Exponential moving average of gradient values
+ state["exp_avg"] = torch.zeros_like(p_data_fp32)
+ # Exponential moving average of squared gradient values
+ state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
+ state['abserrors'] = torch.zeros((256, 256), device=p_data_fp32.device)
+ state['relerrors'] = torch.zeros((256, 256), device=p_data_fp32.device)
+ state['counts'] = torch.zeros((256, 256), device=p_data_fp32.device)
+ if amsgrad:
+ # Maintains max of all exp. moving avg. of sq. grad. values
+ state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32)
+ else:
+ state["exp_avg"] = state["exp_avg"].to(p_data_fp32)
+ state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32)
+ if amsgrad:
+ state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to(
+ p_data_fp32
+ )
+
+ state["step"] += 1
+ beta1, beta2 = group["betas"]
+ bias_correction1 = 1 - beta1 ** state["step"]
+ bias_correction2 = 1 - beta2 ** state["step"]
+ step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1
+ e = state['abserrors']
+ rele = state['relerrors']
+ counts = state['counts']
+
+ if group["weight_decay"] != 0:
+ p_data_fp32.add_(
+ p_data_fp32, alpha=-group["weight_decay"] * group["lr"]
+ )
+
+ exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
+ if amsgrad:
+ max_exp_avg_sq = state["max_exp_avg_sq"]
+
+
+ # Decay the first and second moment running average coefficient
+ exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
+ exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
+
+ denom = exp_avg_sq.sqrt().add_(group["eps"])
+ update_fp32 = exp_avg/denom
+
+ if p_data_fp32.numel() <= 8192 or p_data_fp32.numel() > 50000*1000:
+ # embedding layer or too small
+ p_data_fp32 += -step_size*update_fp32
+ else:
+ if self.analysis == 'dynamic-blockwise':
+ code1 = F.create_dynamic_map(signed=True).to(p.device)
+ code2 = F.create_dynamic_map(signed=False).to(p.device)
+ C1, S1 = F.quantize_blockwise(exp_avg, code=code1)
+ state1 = F.dequantize_blockwise(C1, S1)
+ C2, S2 = F.quantize_blockwise(exp_avg_sq, code=code2)
+ state2 = F.dequantize_blockwise(C2, S2)
+ elif self.analysis == 'dynamic':
+ code1 = F.create_dynamic_map(signed=True).to(p.device)
+ code2 = F.create_dynamic_map(signed=False).to(p.device)
+ C1, S1 = F.quantize(exp_avg, code=code1)
+ state1 = F.dequantize(C1, S1)
+ C2, S2 = F.quantize(exp_avg_sq, code=code2)
+ state2 = F.dequantize(C2, S2)
+ elif self.analysis == 'linear':
+ code1 = F.create_linear_map(signed=True).to(p.device)
+ code2 = F.create_linear_map(signed=False).to(p.device)
+ C1, S1 = F.quantize(exp_avg, code=code1)
+ state1 = F.dequantize(C1, S1)
+ C2, S2 = F.quantize(exp_avg_sq, code=code2)
+ state2 = F.dequantize(C2, S2)
+ elif self.analysis == 'quantile':
+ code1 = F.estimate_quantiles(exp_avg)
+ code2 = F.estimate_quantiles(exp_avg_sq)
+ C1 = F.quantize_no_absmax(exp_avg, code=code1)
+ state1 = F.dequantize_no_absmax(C1, code1)
+ C2 = F.quantize_no_absmax(exp_avg_sq, code=code2)
+ state2 = F.dequantize_no_absmax(C2, code2)
+ else:
+ raise ValueError(f'Invalid analysis value: {self.analysis}!')
+
+ denom = state2.sqrt().add_(group["eps"])
+ update_8bit = state1/denom
+
+ abserr = torch.abs(update_8bit-update_fp32)
+ relerr = abserr/torch.abs(update_fp32+1e-6)
+
+ C1, C2 = C1.int(), C2.int()
+
+ F.histogram_scatter_add_2d(e, C1.int(), C2.int(), abserr)
+ F.histogram_scatter_add_2d(rele, C1.int(), C2.int(), relerr)
+ F.histogram_scatter_add_2d(counts, C1.int(), C2.int(), torch.ones_like(abserr))
+
+ p_data_fp32 += -step_size*update_fp32
+
+
+ if not dist.is_initialized() or dist.get_rank() == 0:
+ if self.savedir != '' and state['step'] % 100 == 0:
+ if not os.path.exists(self.savedir): os.makedirs(self.savedir)
+ shapestr = '_'.join([str(dim) for dim in p_data_fp32.shape])
+ pathe = join(self.savedir, f'{p_id}_{shapestr}_abserr.pkl')
+ pathrele = join(self.savedir, f'{p_id}_{shapestr}_relerr.pkl')
+ pathcounts = join(self.savedir, f'{p_id}_{shapestr}_counts.pkl')
+ torch.save(e, pathe)
+ torch.save(rele, pathrele)
+ torch.save(counts, pathcounts)
+
+ if p.data.dtype in {torch.float16, torch.bfloat16}:
+ p.data.copy_(p_data_fp32)
+
+
+
+ return loss