summaryrefslogtreecommitdiff
path: root/tests/test_functional.py
diff options
context:
space:
mode:
authorTim Dettmers <tim.dettmers@gmail.com>2021-10-05 19:16:20 -0700
committerTim Dettmers <tim.dettmers@gmail.com>2021-10-05 19:16:20 -0700
commit7439924891496025edf60c9da6a782f362a50c70 (patch)
tree90476984d2c267f89232577a2ea40eb172387475 /tests/test_functional.py
Initial commit
Diffstat (limited to 'tests/test_functional.py')
-rw-r--r--tests/test_functional.py213
1 files changed, 213 insertions, 0 deletions
diff --git a/tests/test_functional.py b/tests/test_functional.py
new file mode 100644
index 0000000..2a7d308
--- /dev/null
+++ b/tests/test_functional.py
@@ -0,0 +1,213 @@
+# Copyright (c) Facebook, Inc. and its affiliates.
+#
+# This source code is licensed under the MIT license found in the
+# LICENSE file in the root directory of this source tree.
+import pytest
+import torch
+import bitsandbytes as bnb
+
+from itertools import product
+
+from bitsandbytes import functional as F
+
+def setup():
+ pass
+
+def teardown():
+ pass
+
+@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=['float', 'half'])
+def test_estimate_quantiles(dtype):
+ A = torch.rand(1024, 1024, device='cuda')
+ A = A.to(dtype)
+ code = F.estimate_quantiles(A)
+
+ percs = torch.linspace(1/512, 511/512, 256, device=A.device)
+ torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2)
+
+ A = torch.randn(1024, 1024, device='cuda')
+ A = A.to(dtype)
+ code = F.estimate_quantiles(A)
+
+ quantiles = torch.quantile(A.float(), percs)
+ diff = torch.abs(code-quantiles)
+ assert (diff > 5e-02).sum().item() == 0
+
+
+def test_quantile_quantization():
+ for i in range(100):
+ A1 = torch.randn(1024, 1024, device='cuda')
+ code = F.estimate_quantiles(A1)
+ C = F.quantize_no_absmax(A1, code)
+ A2 = F.dequantize_no_absmax(C, code)
+ diff = torch.abs(A1-A2).mean().item()
+ assert diff < 0.0075
+
+ A1 = torch.rand(1024, 1024, device='cuda')
+ code = F.estimate_quantiles(A1)
+ C = F.quantize_no_absmax(A1, code)
+ A2 = F.dequantize_no_absmax(C, code)
+ diff = torch.abs(A1-A2).mean().item()
+ torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0)
+ assert diff < 0.001
+
+
+def test_dynamic_quantization():
+ diffs = []
+ reldiffs = []
+ for i in range(100):
+ A1 = torch.randn(1024, 1024, device='cuda')
+ C, S = F.quantize(A1)
+ A2 = F.dequantize(C, S)
+ diff = torch.abs(A1-A2)
+ reldiff = diff/torch.abs(A1+1e-8)
+ diffs.append(diff.mean().item())
+ reldiffs.append(reldiff.mean().item())
+ assert diff.mean().item() < 0.0135
+ print(sum(diffs)/len(diffs))
+ print(sum(reldiffs)/len(reldiffs))
+
+ for i in range(100):
+ A1 = torch.rand(1024, 1024, device='cuda')
+ C, S = F.quantize(A1)
+ A2 = F.dequantize(C, S)
+ diff = torch.abs(A1-A2).mean().item()
+ torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
+ assert diff < 0.004
+
+
+def test_dynamic_blockwise_quantization():
+ diffs = []
+ reldiffs = []
+ for i in range(100):
+ A1 = torch.randn(1024, 1024, device='cuda')
+ C, S = F.quantize_blockwise(A1)
+ A2 = F.dequantize_blockwise(C, S)
+ diff = torch.abs(A1-A2)
+ reldiff = diff/torch.abs(A1+1e-8)
+ diffs.append(diff.mean().item())
+ reldiffs.append(reldiff.mean().item())
+ assert diffs[-1] < 0.011
+ print(sum(diffs)/len(diffs))
+ print(sum(reldiffs)/len(reldiffs))
+
+ diffs = []
+ for i in range(100):
+ A1 = torch.rand(1024, 1024, device='cuda')
+ C, S = F.quantize_blockwise(A1)
+ A2 = F.dequantize_blockwise(C, S)
+ diff = torch.abs(A1-A2).mean().item()
+ assert diff < 0.0033
+ diffs.append(diff)
+ torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
+ #print(sum(diffs)/len(diffs))
+
+def test_dynamic_blockwise_stochastic_quantization():
+ diffs = []
+ reldiffs = []
+ rand = torch.rand(1024).cuda()
+ for i in range(100):
+ A1 = torch.randn(1024, 1024, device='cuda')
+ C1, S1 = F.quantize_blockwise(A1, rand=rand)
+ C2, S2 = F.quantize_blockwise(A1)
+ # a maximunm distance of quantized values of 1
+ torch.testing.assert_allclose(C1, C2, atol=1, rtol=0)
+ fraction_smaller = (C1<C2).float().sum()/C1.numel()
+ fraction_larger = (C1>C2).float().sum()/C1.numel()
+ torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0)
+
+
+
+@pytest.mark.parametrize("gtype", [torch.float32, torch.float16], ids=['float', 'half'])
+def test_percentile_clipping(gtype):
+ gnorm_vec1 = torch.zeros(100, device='cuda')
+ gnorm_vec2 = torch.zeros(100, device='cuda')
+ n = 4
+ step = 0
+ percentile=5
+ for i in range(1000):
+ step += 1
+ g = torch.randn(n, n, dtype=gtype, device='cuda')
+ gnorm1, clip2, gnorm_scale = F.percentile_clipping(g, gnorm_vec2, step, percentile=percentile)
+ assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2/gnorm1
+
+ gnorm2 = torch.norm(g.float())
+ if step == 1:
+ gnorm_vec1[:] = gnorm2
+ else:
+ gnorm_vec1[step % 100] = gnorm2
+
+ vals, idx = torch.sort(gnorm_vec1)
+ clip1 = vals[percentile]
+
+ torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2))
+ torch.testing.assert_allclose(clip1, clip2)
+ torch.testing.assert_allclose(gnorm1, gnorm2)
+
+
+def test_stable_embedding():
+ layer = bnb.nn.StableEmbedding(1024, 1024)
+ layer.reset_parameters()
+
+
+def test_dynamic_blockwise_quantization_cpu():
+ #A1 = torch.randn(1024, 1024, device='cpu')
+ #code = F.create_dynamic_map()
+ #for i in range(1000):
+ # C, S = F.quantize_blockwise(A1, code=code)
+ # A2 = F.dequantize_blockwise(C, S)
+
+ for i in range(10):
+ # equivalence with GPU blockwise quantization
+ A1 = torch.randn(1024, 1024, device='cpu')
+ C1, S1 = F.quantize_blockwise(A1)
+ C2, S2 = F.quantize_blockwise(A1.cuda())
+ torch.testing.assert_allclose(S1[0], S2[0].cpu())
+ # there seems to be some issues with precision in CUDA vs CPU
+ # not all elements are usually close, with couple off elements in a million
+ idx = torch.isclose(C1, C2.cpu())
+ assert (idx==0).sum().item() < 15
+
+
+ diffs = []
+ reldiffs = []
+ for i in range(10):
+ A1 = torch.randn(1024, 1024, device='cpu')
+ C, S = F.quantize_blockwise(A1)
+ A2 = F.dequantize_blockwise(C, S)
+ diff = torch.abs(A1-A2)
+ reldiff = diff/torch.abs(A1+1e-8)
+ diffs.append(diff.mean().item())
+ reldiffs.append(reldiff.mean().item())
+ assert diffs[-1] < 0.011
+ #print(sum(diffs)/len(diffs))
+ #print(sum(reldiffs)/len(reldiffs))
+
+ diffs = []
+ for i in range(10):
+ A1 = torch.rand(1024, 1024, device='cpu')
+ C, S = F.quantize_blockwise(A1)
+ A2 = F.dequantize_blockwise(C, S)
+ diff = torch.abs(A1-A2).mean().item()
+ assert diff < 0.0033
+ diffs.append(diff)
+ torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
+ #print(sum(diffs)/len(diffs))
+
+
+def test_histogram():
+ dim1, dim2 = 32, 32
+ source = torch.rand(dim1, dim2, device='cuda')
+ idx1 = torch.randint(0, 255, size=(dim1, dim2), device='cuda').int()
+ idx2 = torch.randint(0, 255, size=(dim1, dim2), device='cuda').int()
+ histogram1 = torch.zeros((256, 256)).cuda()
+ histogram2 = torch.zeros((256, 256)).cuda()
+
+ F.histogram_scatter_add_2d(histogram2, idx1, idx2, source)
+
+ for i in range(dim1):
+ for j in range(dim2):
+ histogram1[idx1[i, j].item(), idx2[i, j].item()] += source[i, j]
+
+ torch.testing.assert_allclose(histogram1, histogram2)
+ torch.testing.assert_allclose(histogram1.sum(), source.sum())