diff options
author | Tim Dettmers <tim.dettmers@gmail.com> | 2022-07-26 18:15:51 -0700 |
---|---|---|
committer | Tim Dettmers <tim.dettmers@gmail.com> | 2022-07-26 18:15:51 -0700 |
commit | 32fa459ed7c812c79e847145004061f21b7ac0d9 (patch) | |
tree | 1a11f128f5db119afc76e6f2d649b20f34536a74 /tests | |
parent | bcab99ec877ba063543bd7c03ba1cdd1b06e8078 (diff) |
Added col_ampere outlier extraction kernel.
Diffstat (limited to 'tests')
-rw-r--r-- | tests/test_functional.py | 14 |
1 files changed, 10 insertions, 4 deletions
diff --git a/tests/test_functional.py b/tests/test_functional.py index 4d06447..2d58fac 100644 --- a/tests/test_functional.py +++ b/tests/test_functional.py @@ -1859,9 +1859,9 @@ def test_zp(): def test_extract_outliers(): for i in range(k): - shapeA = (4096, 4*4096) + shapeA = (4096, 4096*4) idx = torch.unique(torch.randint(0, shapeA[1], size=(10,)).int()).cuda() - #idx = torch.Tensor([32]).int().cuda() + #idx = torch.Tensor([0]).int().cuda() A = torch.randint(-128, 127, size=shapeA, device='cuda').to(torch.int8) outliers1 = A[:, idx.long()] @@ -1872,7 +1872,13 @@ def test_extract_outliers(): assert outliers2.shape[0] == shapeA[0] assert outliers2.shape[1] == idx.numel() - #print(outliers1) - #print(outliers2) + torch.testing.assert_allclose(outliers1, outliers2) + + CA, SA = F.transform(A, 'col_ampere') + + outliers2 = F.extract_outliers(CA, SA, idx) + + assert outliers2.shape[0] == shapeA[0] + assert outliers2.shape[1] == idx.numel() torch.testing.assert_allclose(outliers1, outliers2) |