summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--README.md14
-rw-r--r--bitsandbytes/__init__.py2
-rw-r--r--bitsandbytes/__main__.py7
-rw-r--r--bitsandbytes/autograd/_functions.py4
-rw-r--r--bitsandbytes/cuda_setup/compute_capability.py79
-rw-r--r--bitsandbytes/cuda_setup/main.py11
-rw-r--r--bitsandbytes/cuda_setup/paths.py16
-rw-r--r--bitsandbytes/functional.py42
-rw-r--r--bitsandbytes/optim/__init__.py15
-rw-r--r--bitsandbytes/utils.py9
-rw-r--r--csrc/ops.cu6
-rw-r--r--setup.py2
-rw-r--r--tests/test_autograd.py2
-rw-r--r--tests/test_functional.py48
14 files changed, 60 insertions, 197 deletions
diff --git a/README.md b/README.md
index 0ae3afa..eac64a5 100644
--- a/README.md
+++ b/README.md
@@ -23,12 +23,12 @@ Resources:
1. Comment out torch.nn.Linear: ``#linear = torch.nn.Linear(...)``
2. Add bnb 8-bit linear light module: ``linear = bnb.nn.Linear8bitLt(...)`` (base arguments stay the same)
3. There are two modes:
- - Mixed 8-bit training with 16-bit main weights. Pass the argument ``use_fp16_weights=True`` (default)
- - Int8 inference. Pass the argument ``use_fp16_weights=False``
+ - Mixed 8-bit training with 16-bit main weights. Pass the argument ``has_fp16_weights=True`` (default)
+ - Int8 inference. Pass the argument ``has_fp16_weights=False``
4. To use the full LLM.int8() method, use the ``threshold=k`` argument. We recommend ``k=6.0``.
```python
# LLM.int8()
-linear = bnb.nn.Linear8bitLt(dim1, dim2, bias=True, use_fp16_weights=False, threshold=6.0)
+linear = bnb.nn.Linear8bitLt(dim1, dim2, bias=True, has_fp16_weights=False, threshold=6.0)
# inputs need to be fp16
out = linear(x.to(torch.float16))
```
@@ -115,7 +115,8 @@ We thank Fabio Cannizzo for his work on [FastBinarySearch](https://github.com/fa
## How to cite us
If you found this library and found LLM.int8() useful, please consider citing our work:
-```
+
+```bibtex
@article{dettmers2022llmint8,
title={LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale},
author={Dettmers, Tim and Lewis, Mike and Belkada, Younes and Zettlemoyer, Luke},
@@ -124,8 +125,9 @@ If you found this library and found LLM.int8() useful, please consider citing ou
}
```
-For 8-bit optimizers or quantization routines please consider citing the following work.
-```
+For 8-bit optimizers or quantization routines, please consider citing the following work:
+
+```bibtex
@article{dettmers2022optimizers,
title={8-bit Optimizers via Block-wise Quantization},
author={Dettmers, Tim and Lewis, Mike and Shleifer, Sam and Zettlemoyer, Luke},
diff --git a/bitsandbytes/__init__.py b/bitsandbytes/__init__.py
index 7901f96..6d1177f 100644
--- a/bitsandbytes/__init__.py
+++ b/bitsandbytes/__init__.py
@@ -12,7 +12,7 @@ from .autograd._functions import (
)
from .cextension import COMPILED_WITH_CUDA
from .nn import modules
-from . import cuda_setup
+from . import cuda_setup, utils
if COMPILED_WITH_CUDA:
from .optim import adam
diff --git a/bitsandbytes/__main__.py b/bitsandbytes/__main__.py
index 5f11875..175a30e 100644
--- a/bitsandbytes/__main__.py
+++ b/bitsandbytes/__main__.py
@@ -3,8 +3,9 @@
# cli()
import os
import sys
-import torch
+from warnings import warn
+import torch
HEADER_WIDTH = 60
@@ -32,8 +33,6 @@ print()
from . import COMPILED_WITH_CUDA, PACKAGE_GITHUB_URL
from .cuda_setup.main import get_compute_capabilities, get_cuda_lib_handle
from .cuda_setup.env_vars import to_be_ignored
-from .utils import print_stderr
-
print_header("POTENTIALLY LIBRARY-PATH-LIKE ENV VARS")
for k, v in os.environ.items():
@@ -84,7 +83,7 @@ try:
except ImportError:
print()
- print_stderr(
+ warn(
f"WARNING: {__package__} is currently running as CPU-only!\n"
"Therefore, 8-bit optimizers and GPU quantization are unavailable.\n\n"
f"If you think that this is so erroneously,\nplease report an issue!"
diff --git a/bitsandbytes/autograd/_functions.py b/bitsandbytes/autograd/_functions.py
index 3bd39a9..226cbb5 100644
--- a/bitsandbytes/autograd/_functions.py
+++ b/bitsandbytes/autograd/_functions.py
@@ -1,6 +1,5 @@
import operator
import torch
-import bitsandbytes as bnb
import bitsandbytes.functional as F
from dataclasses import dataclass
@@ -368,9 +367,6 @@ class MatMul8bitLt(torch.autograd.Function):
return grad_A, grad_B, None, grad_bias, None
-matmul = MatMul8bitLt.apply
-
-
def matmul(
A: tensor,
B: tensor,
diff --git a/bitsandbytes/cuda_setup/compute_capability.py b/bitsandbytes/cuda_setup/compute_capability.py
deleted file mode 100644
index 7a3f463..0000000
--- a/bitsandbytes/cuda_setup/compute_capability.py
+++ /dev/null
@@ -1,79 +0,0 @@
-import ctypes
-from dataclasses import dataclass, field
-
-
-@dataclass
-class CudaLibVals:
- # code bits taken from
- # https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
-
- nGpus: ctypes.c_int = field(default=ctypes.c_int())
- cc_major: ctypes.c_int = field(default=ctypes.c_int())
- cc_minor: ctypes.c_int = field(default=ctypes.c_int())
- device: ctypes.c_int = field(default=ctypes.c_int())
- error_str: ctypes.c_char_p = field(default=ctypes.c_char_p())
- cuda: ctypes.CDLL = field(init=False, repr=False)
- ccs: List[str, ...] = field(init=False)
-
- def _initialize_driver_API(self):
- self.check_cuda_result(self.cuda.cuInit(0))
-
- def _load_cuda_lib(self):
- """
- 1. find libcuda.so library (GPU driver) (/usr/lib)
- init_device -> init variables -> call function by reference
- """
- libnames = "libcuda.so"
- for libname in libnames:
- try:
- self.cuda = ctypes.CDLL(libname)
- except OSError:
- continue
- else:
- break
- else:
- raise OSError("could not load any of: " + " ".join(libnames))
-
- def call_cuda_func(self, function_obj, **kwargs):
- CUDA_SUCCESS = 0 # constant taken from cuda.h
- pass
- # if (CUDA_SUCCESS := function_obj(
-
- def _error_handle(cuda_lib_call_return_value):
- """
- 2. call extern C function to determine CC
- (see https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
- """
- CUDA_SUCCESS = 0 # constant taken from cuda.h
-
- if cuda_lib_call_return_value != CUDA_SUCCESS:
- self.cuda.cuGetErrorString(
- cuda_lib_call_return_value,
- ctypes.byref(self.error_str),
- )
- print("Count not initialize CUDA - failure!")
- raise Exception("CUDA exception!")
- return cuda_lib_call_return_value
-
- def __post_init__(self):
- self._load_cuda_lib()
- self._initialize_driver_API()
- self.check_cuda_result(
- self.cuda, self.cuda.cuDeviceGetCount(ctypes.byref(self.nGpus))
- )
- tmp_ccs = []
- for gpu_index in range(self.nGpus.value):
- check_cuda_result(
- self.cuda,
- self.cuda.cuDeviceGet(ctypes.byref(self.device), gpu_index),
- )
- check_cuda_result(
- self.cuda,
- self.cuda.cuDeviceComputeCapability(
- ctypes.byref(self.cc_major),
- ctypes.byref(self.cc_minor),
- self.device,
- ),
- )
- tmp_ccs.append(f"{self.cc_major.value}.{self.cc_minor.value}")
- self.ccs = sorted(tmp_ccs, reverse=True)
diff --git a/bitsandbytes/cuda_setup/main.py b/bitsandbytes/cuda_setup/main.py
index 975b772..78a2844 100644
--- a/bitsandbytes/cuda_setup/main.py
+++ b/bitsandbytes/cuda_setup/main.py
@@ -17,9 +17,7 @@ evaluation:
"""
import ctypes
-from pathlib import Path
-from ..utils import execute_and_return
from .paths import determine_cuda_runtime_lib_path
@@ -28,7 +26,7 @@ def check_cuda_result(cuda, result_val):
if result_val != 0:
error_str = ctypes.c_char_p()
cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
- raise Exception(f"CUDA exception! Error code: {error_str.value.decode()}")
+ print(f"CUDA exception! Error code: {error_str.value.decode()}")
def get_cuda_version(cuda, cudart_path):
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
@@ -57,7 +55,7 @@ def get_cuda_lib_handle():
cuda = ctypes.CDLL("libcuda.so")
except OSError:
# TODO: shouldn't we error or at least warn here?
- raise Exception('CUDA SETUP: ERROR! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
+ print('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
return None
check_cuda_result(cuda, cuda.cuInit(0))
@@ -80,7 +78,6 @@ def get_compute_capabilities(cuda):
cc_major = ctypes.c_int()
cc_minor = ctypes.c_int()
- result = ctypes.c_int()
device = ctypes.c_int()
check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
@@ -119,6 +116,10 @@ def evaluate_cuda_setup():
print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
print('='*80)
binary_name = "libbitsandbytes_cpu.so"
+ #if not torch.cuda.is_available():
+ #print('No GPU detected. Loading CPU library...')
+ #return binary_name
+
cudart_path = determine_cuda_runtime_lib_path()
if cudart_path is None:
print(
diff --git a/bitsandbytes/cuda_setup/paths.py b/bitsandbytes/cuda_setup/paths.py
index 9c565c7..6f6425f 100644
--- a/bitsandbytes/cuda_setup/paths.py
+++ b/bitsandbytes/cuda_setup/paths.py
@@ -2,23 +2,11 @@ from pathlib import Path
from typing import Set, Union
from warnings import warn
-from ..utils import print_stderr
from .env_vars import get_potentially_lib_path_containing_env_vars
-
CUDA_RUNTIME_LIB: str = "libcudart.so"
-def purge_unwanted_semicolon(tentative_path: Path) -> Path:
- """
- Special function to handle the following exception:
- __LMOD_REF_COUNT_PATH=/sw/cuda/11.6.2/bin:2;/mmfs1/home/dettmers/git/sched/bin:1;/mmfs1/home/dettmers/data/anaconda3/bin:1;/mmfs1/home/dettmers/data/anaconda3/condabin:1;/mmfs1/home/dettmers/.local/bin:1;/mmfs1/home/dettmers/bin:1;/usr/local/bin:1;/usr/bin:1;/usr/local/sbin:1;/usr/sbin:1;/mmfs1/home/dettmers/.fzf/bin:1;/mmfs1/home/dettmers/data/local/cuda-11.4/bin:1
- """
- # if ';' in str(tentative_path):
- # path_as_str, _ = str(tentative_path).split(';')
- pass
-
-
def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
@@ -29,7 +17,7 @@ def remove_non_existent_dirs(candidate_paths: Set[Path]) -> Set[Path]:
}
if non_existent_directories:
- print_stderr(
+ warn(
"WARNING: The following directories listed in your path were found to "
f"be non-existent: {non_existent_directories}"
)
@@ -117,8 +105,6 @@ def determine_cuda_runtime_lib_path() -> Union[Path, None]:
if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"}
}
-
-
cuda_runtime_libs = set()
for env_var, value in remaining_candidate_env_vars.items():
cuda_runtime_libs.update(find_cuda_lib_in(value))
diff --git a/bitsandbytes/functional.py b/bitsandbytes/functional.py
index 6637554..22200f2 100644
--- a/bitsandbytes/functional.py
+++ b/bitsandbytes/functional.py
@@ -5,7 +5,6 @@
import ctypes as ct
import operator
import random
-import math
import torch
from typing import Tuple
@@ -185,14 +184,9 @@ def create_dynamic_map(signed=True, n=7):
def get_special_format_str():
+ if not torch.cuda.is_available(): return 'col_turing'
major, minor = torch.cuda.get_device_capability()
- if major < 7:
- print(
- f"Device with CUDA capability of {major} not supported for 8-bit matmul. Device has no tensor cores!"
- )
- assert major >= 7
-
- if major == 7:
+ if major <= 7:
return "col_turing"
elif major == 8:
return "col_ampere"
@@ -248,23 +242,6 @@ def get_transform_func(dtype, orderA, orderOut, transpose=False):
return getattr(lib, name)
-class GlobalData(object):
- _instance = None
-
- def __init__(self):
- raise RuntimeError("Call get_instance() instead")
-
- def initialize(self):
- self.data = {}
-
- @classmethod
- def get_instance(cls):
- if cls._instance is None:
- cls._instance = cls.__new__(cls)
- cls._instance.initialize()
- return cls._instance
-
-
def get_transform_buffer(
shape, dtype, device, to_order, from_order="row", transpose=False
):
@@ -1685,21 +1662,6 @@ def double_quant(
return out_row, out_col, row_stats, col_stats, coo_tensor
-def get_special_format_str():
- major, minor = torch.cuda.get_device_capability()
- if major < 7:
- print(
- f"Device with CUDA capability of {major} not supported for 8-bit matmul. Device has no tensor cores!"
- )
- assert major >= 7
-
- if major == 7: return 'col_turing'
- elif major == 8: return 'col_ampere'
- else: return 'col_turing'
-
-
-
-
def transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None):
prev_device = pre_call(A.device)
if state is None: state = (A.shape, from_order)
diff --git a/bitsandbytes/optim/__init__.py b/bitsandbytes/optim/__init__.py
index a76d717..d18f1d1 100644
--- a/bitsandbytes/optim/__init__.py
+++ b/bitsandbytes/optim/__init__.py
@@ -5,13 +5,12 @@
from bitsandbytes.cextension import COMPILED_WITH_CUDA
-if COMPILED_WITH_CUDA:
- from .adam import Adam, Adam8bit, Adam32bit
- from .adamw import AdamW, AdamW8bit, AdamW32bit
- from .sgd import SGD, SGD8bit, SGD32bit
- from .lars import LARS, LARS8bit, LARS32bit, PytorchLARS
- from .lamb import LAMB, LAMB8bit, LAMB32bit
- from .rmsprop import RMSprop, RMSprop8bit, RMSprop32bit
- from .adagrad import Adagrad, Adagrad8bit, Adagrad32bit
+from .adam import Adam, Adam8bit, Adam32bit
+from .adamw import AdamW, AdamW8bit, AdamW32bit
+from .sgd import SGD, SGD8bit, SGD32bit
+from .lars import LARS, LARS8bit, LARS32bit, PytorchLARS
+from .lamb import LAMB, LAMB8bit, LAMB32bit
+from .rmsprop import RMSprop, RMSprop8bit, RMSprop32bit
+from .adagrad import Adagrad, Adagrad8bit, Adagrad32bit
from .optimizer import GlobalOptimManager
diff --git a/bitsandbytes/utils.py b/bitsandbytes/utils.py
index 4256a87..1cd90e3 100644
--- a/bitsandbytes/utils.py
+++ b/bitsandbytes/utils.py
@@ -1,6 +1,5 @@
import shlex
import subprocess
-import sys
from typing import Tuple
@@ -22,11 +21,3 @@ def execute_and_return(command_string: str) -> Tuple[str, str]:
std_out, std_err = execute_and_return_decoded_std_streams(command_string)
return std_out, std_err
-
-
-def print_stderr(s: str) -> None:
- print(s, file=sys.stderr)
-
-
-def warn_of_missing_prerequisite(s: str) -> None:
- print_stderr("WARNING, missing pre-requisite: " + s)
diff --git a/csrc/ops.cu b/csrc/ops.cu
index c0ec3cb..e49c94b 100644
--- a/csrc/ops.cu
+++ b/csrc/ops.cu
@@ -371,7 +371,11 @@ template void transform<int32_t, COL32, ROW, false, 32>(cublasLtHandle_t ltHandl
template <int FORMATB, int DTYPE_OUT, int SCALE_ROWS> int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc)
{
#ifdef NO_CUBLASLT
- printf("ERROR: Your GPU does not support Int8 Matmul!");
+ cout << "" << endl;
+ cout << "=============================================" << endl;
+ cout << "ERROR: Your GPU does not support Int8 Matmul!" << endl;
+ cout << "=============================================" << endl;
+ cout << "" << endl;
assert(false);
return 0;
diff --git a/setup.py b/setup.py
index ef33f8a..b722ae9 100644
--- a/setup.py
+++ b/setup.py
@@ -18,7 +18,7 @@ def read(fname):
setup(
name=f"bitsandbytes",
- version=f"0.32.1",
+ version=f"0.32.3",
author="Tim Dettmers",
author_email="dettmers@cs.washington.edu",
description="8-bit optimizers and matrix multiplication routines.",
diff --git a/tests/test_autograd.py b/tests/test_autograd.py
index 0cd17c9..bae26de 100644
--- a/tests/test_autograd.py
+++ b/tests/test_autograd.py
@@ -40,6 +40,7 @@ names = [
ids=names,
)
def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
+ if not torch.cuda.is_available(): pytest.skip('No GPU found.')
if dim2 > 0:
dim2 = dim2 - (dim2 % 16)
dim3 = dim3 - (dim3 % 16)
@@ -306,6 +307,7 @@ def test_matmullt(
has_fp16_weights,
has_bias
):
+ if not torch.cuda.is_available(): pytest.skip('No GPU found.')
dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
outlier_dim = torch.randint(0, dimA[1], size=(dimA[1] // 8,), device="cuda")
diff --git a/tests/test_functional.py b/tests/test_functional.py
index 09a01d8..14cc21e 100644
--- a/tests/test_functional.py
+++ b/tests/test_functional.py
@@ -1813,16 +1813,16 @@ def test_spmm_coo_dequant(dim1, dim2, dtype):
batch_size = 1
-seqdim = 2048
+seqdim = 1
values = []
-values.append((batch_size, seqdim, 768, 4 * 768))
+#values.append((batch_size, seqdim, 768, 4 * 768))
# values.append((batch_size, seqdim, 1024, 4*1024))
# values.append((batch_size, seqdim, 1536, 4*1536))
# values.append((batch_size, seqdim, 2048, 4*2048))
# values.append((batch_size, seqdim, 2560, 4*2560))
# values.append((batch_size, seqdim, 4096, 4*4096))
# values.append((batch_size, seqdim, 5140, 4*5140))
-# values.append((batch_size, seqdim, 12288, 4*12288))
+values.append((batch_size, seqdim, 12288, 4*12288))
names = [
"batch_{0}_seq_{1}_model_{2}_hidden_{3}".format(*vals) for vals in values
]
@@ -1830,6 +1830,7 @@ names = [
@pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names)
def test_bench_matmul(batch, seq, model, hidden):
+ iters = 128
formatB = F.get_special_format_str()
A = torch.randn(batch, seq, model, device="cuda").half()
@@ -1848,28 +1849,33 @@ def test_bench_matmul(batch, seq, model, hidden):
linearMixedBit.eval()
# warmup
- for i in range(100):
+ for i in range(iters):
torch.matmul(A, B.t())
torch.cuda.synchronize()
print("")
torch.cuda.synchronize()
t0 = time.time()
- for i in range(100):
+ for i in range(iters):
torch.matmul(A, B.t())
torch.cuda.synchronize()
print(
- f"pytorch: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
+ f"pytorch fp16: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
)
torch.cuda.synchronize()
t0 = time.time()
- for i in range(100):
+ for i in range(iters):
bnb.matmul(A, B)
torch.cuda.synchronize()
- print(
- f"bnb lt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
- )
+ print(f"CB -> CxB conversion (each iteration): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
+
+ torch.cuda.synchronize()
+ t0 = time.time()
+ for i in range(iters):
+ bnb.matmul(A, B, threshold=6.0)
+ torch.cuda.synchronize()
+ print(f"CB -> CxB conversion + threshold: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=0.0)
C32A, SA = F.transform(CA, "col32")
@@ -1877,18 +1883,16 @@ def test_bench_matmul(batch, seq, model, hidden):
CxB, SB = F.transform(CB, to_order=formatB)
torch.cuda.synchronize()
t0 = time.time()
- for i in range(100):
+ for i in range(iters):
out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB)
torch.cuda.synchronize()
- print(
- f"igemmlt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
- )
+ print(f"no overhead matmul-lt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
BA, statsB = F.vectorwise_quant(B, dim=1)
CxB, SB = F.nvidia_transform(CB, to_order=formatB)
torch.cuda.synchronize()
t0 = time.time()
- for i in range(100):
+ for i in range(iters):
A2 = A.view(-1, A.shape[-1]).contiguous()
CA, statsA = F.vectorwise_quant(A2, dim=1)
C32A, SA = F.nvidia_transform(CA, "col32")
@@ -1896,15 +1900,13 @@ def test_bench_matmul(batch, seq, model, hidden):
Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32)
F.vectorwise_mm_dequant(Cout, statsA, statsB.t())
torch.cuda.synchronize()
- print(
- f"vector pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
- )
+ #print(f"vector pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
BA, statsB = F.vectorwise_quant(B, dim=1, quant_type="linear")
CxB, SB = F.nvidia_transform(CB, to_order=formatB)
torch.cuda.synchronize()
t0 = time.time()
- for i in range(100):
+ for i in range(iters):
A2 = A.view(-1, A.shape[-1]).contiguous()
CA, statsA = F.vectorwise_quant(A2, dim=1, quant_type="linear")
C32A, SA = F.nvidia_transform(CA, "col32")
@@ -1912,14 +1914,12 @@ def test_bench_matmul(batch, seq, model, hidden):
Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32)
out = Cout * statsB * statsA * (1.0 / (127 * 127))
torch.cuda.synchronize()
- print(
- f"linear pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
- )
+ #print(f"linear pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
linear8bit(A)
torch.cuda.synchronize()
t0 = time.time()
- for i in range(100):
+ for i in range(iters):
linear8bit(A)
torch.cuda.synchronize()
print(
@@ -1929,7 +1929,7 @@ def test_bench_matmul(batch, seq, model, hidden):
linearMixedBit(A)
torch.cuda.synchronize()
t0 = time.time()
- for i in range(100):
+ for i in range(iters):
linearMixedBit(A)
torch.cuda.synchronize()
print(