summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--CHANGELOG.md23
-rw-r--r--bitsandbytes/cextension.py13
-rw-r--r--bitsandbytes/cuda_setup/main.py11
-rw-r--r--csrc/ops.cu3
-rw-r--r--setup.py2
5 files changed, 42 insertions, 10 deletions
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 285984e..1017721 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -67,3 +67,26 @@ Features:
Deprecated:
- Pre-compiled release for CUDA 9.2, 10.0, 10.2 no longer available
+
+### 0.31.0
+
+#### 8-bit Inference and Packaging Update
+
+Features:
+ - added direct outlier extraction. This enables outlier extraction without fp16 weights without performance degradation.
+ - Added automatic CUDA SETUP procedure and packaging all binaries into a single bitsandbytes package.
+
+### 0.32.0
+
+#### 8-bit Inference Performance Enhancements
+
+We added performance enhancements for small models. This makes small models about 2x faster for LLM.int8() inference.
+
+Features:
+ - Int32 dequantization now supports fused biases.
+ - Linear8bitLt now uses a fused bias implementation.
+ - Change `.data.storage().data_ptr()` to `.data.data_ptr()` to enhance inference performance.
+
+Bug fixes:
+ - Now throws and error if LLM.int8() is used on a GPU that is not supported.
+ - Enhances error messaging if CUDA SETUP fails.
diff --git a/bitsandbytes/cextension.py b/bitsandbytes/cextension.py
index e0f280a..af23c8f 100644
--- a/bitsandbytes/cextension.py
+++ b/bitsandbytes/cextension.py
@@ -17,12 +17,17 @@ class CUDALibrary_Singleton(object):
binary_path = package_dir / binary_name
if not binary_path.exists():
- print(f"CUDA_SETUP: TODO: compile library for specific version: {binary_name}")
+ print(f"CUDA SETUP: TODO: compile library for specific version: {binary_name}")
legacy_binary_name = "libbitsandbytes.so"
- print(f"CUDA_SETUP: Defaulting to {legacy_binary_name}...")
- self.lib = ct.cdll.LoadLibrary(package_dir / legacy_binary_name)
+ print(f"CUDA SETUP: Defaulting to {legacy_binary_name}...")
+ binary_path = package_dir / legacy_binary_name
+ if not binary_path.exists():
+ print('CUDA SETUP: CUDA detection failed. Either CUDA driver not installed, CUDA not installed, or you have multiple conflicting CUDA libraries!')
+ print('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.')
+ raise Exception('CUDA SETUP: Setup Failed!')
+ self.lib = ct.cdll.LoadLibrary(binary_path)
else:
- print(f"CUDA_SETUP: Loading binary {binary_path}...")
+ print(f"CUDA SETUP: Loading binary {binary_path}...")
self.lib = ct.cdll.LoadLibrary(binary_path)
@classmethod
diff --git a/bitsandbytes/cuda_setup/main.py b/bitsandbytes/cuda_setup/main.py
index 1f2ceb4..975b772 100644
--- a/bitsandbytes/cuda_setup/main.py
+++ b/bitsandbytes/cuda_setup/main.py
@@ -46,7 +46,7 @@ def get_cuda_version(cuda, cudart_path):
minor = (version-(major*1000))//10
if major < 11:
- print('CUDA SETUP: CUDA version lower than 11 are currenlty not supported!')
+ print('CUDA SETUP: CUDA version lower than 11 are currenlty not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!')
return f'{major}{minor}'
@@ -57,7 +57,7 @@ def get_cuda_lib_handle():
cuda = ctypes.CDLL("libcuda.so")
except OSError:
# TODO: shouldn't we error or at least warn here?
- print('ERROR: libcuda.so not found!')
+ raise Exception('CUDA SETUP: ERROR! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
return None
check_cuda_result(cuda, cuda.cuInit(0))
@@ -115,7 +115,8 @@ def get_compute_capability(cuda):
def evaluate_cuda_setup():
print('')
print('='*35 + 'BUG REPORT' + '='*35)
- print('Welcome to bitsandbytes. For bug reports, please use this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
+ print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues')
+ print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
print('='*80)
binary_name = "libbitsandbytes_cpu.so"
cudart_path = determine_cuda_runtime_lib_path()
@@ -125,7 +126,7 @@ def evaluate_cuda_setup():
)
return binary_name
- print(f"CUDA SETUP: CUDA path found: {cudart_path}")
+ print(f"CUDA SETUP: CUDA runtime path found: {cudart_path}")
cuda = get_cuda_lib_handle()
cc = get_compute_capability(cuda)
print(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}")
@@ -147,7 +148,7 @@ def evaluate_cuda_setup():
# we use ls -l instead of nvcc to determine the cuda version
# since most installations will have the libcudart.so installed, but not the compiler
- print(f'CUDA_SETUP: Detected CUDA version {cuda_version_string}')
+ print(f'CUDA SETUP: Detected CUDA version {cuda_version_string}')
def get_binary_name():
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
diff --git a/csrc/ops.cu b/csrc/ops.cu
index ed32828..c0ec3cb 100644
--- a/csrc/ops.cu
+++ b/csrc/ops.cu
@@ -371,6 +371,9 @@ template void transform<int32_t, COL32, ROW, false, 32>(cublasLtHandle_t ltHandl
template <int FORMATB, int DTYPE_OUT, int SCALE_ROWS> int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc)
{
#ifdef NO_CUBLASLT
+ printf("ERROR: Your GPU does not support Int8 Matmul!");
+ assert(false);
+
return 0;
#else
int has_error = 0;
diff --git a/setup.py b/setup.py
index 61a5d05..2b25720 100644
--- a/setup.py
+++ b/setup.py
@@ -18,7 +18,7 @@ def read(fname):
setup(
name=f"bitsandbytes",
- version=f"0.31.8",
+ version=f"0.32.0",
author="Tim Dettmers",
author_email="dettmers@cs.washington.edu",
description="8-bit optimizers and matrix multiplication routines.",