diff options
-rw-r--r-- | README.md | 84 |
1 files changed, 55 insertions, 29 deletions
@@ -1,21 +1,42 @@ # bitsandbytes -Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. +The bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers, matrix multiplication (LLM.int8()), and quantization functions. -[Paper](https://arxiv.org/abs/2110.02861) -- [Video](https://www.youtube.com/watch?v=IxrlHAJtqKE) -- [Docs](https://bitsandbytes.readthedocs.io/en/latest/) + + +Resources: +- [8-bit Optimizer Paper](https://arxiv.org/abs/2110.02861) -- [Video](https://www.youtube.com/watch?v=IxrlHAJtqKE) -- [Docs](https://bitsandbytes.readthedocs.io/en/latest/) + +- [LLM.int8() Paper](https://arxiv.org/abs/2208.07339) -- [LLM.int8() Software Blog Post](https://huggingface.co/blog/hf-bitsandbytes-integration) -- [LLM.int8() Emergent Features Blog Post](https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features/) ## TL;DR **Installation**: -1. Note down version: ``conda list | grep cudatoolkit`` -2. Replace 111 with the version that you see: ``pip install bitsandbytes-cuda111`` +``pip install bitsandbytes`` -**Usage**: +**Using 8-bit optimizer**: 1. Comment out optimizer: ``#torch.optim.Adam(....)`` 2. Add 8-bit optimizer of your choice ``bnb.optim.Adam8bit(....)`` (arguments stay the same) 3. Replace embedding layer if necessary: ``torch.nn.Embedding(..) -> bnb.nn.Embedding(..)`` +**Using 8-bit Inference**: +1. Comment out torch.nn.Linear: ``#linear = torch.nn.Linear(...)`` +2. Add bnb 8-bit linear light module: ``linear = bnb.nn.Linear8bitLt(...)`` (base arguments stay the same) +3. There are two modes: + - Mixed 8-bit training with 16-bit main weights. Pass the argument ``use_fp16_weights=True`` (default) + - Int8 inference. Pass the argument ``use_fp16_weights=False`` +4. To use the full LLM.int8() method, use the ``threshold=k`` argument. We recommend ``k=6.0``. +```python +# LLM.int8() +linear = bnb.nn.Linear8bitLt(dim1, dim2, bias=True, use_fp16_weights=False, threshold=6.0) +# inputs need to be fp16 +out = linear(x.to(torch.float16)) +``` + + ## Features +- 8-bit Matrix multiplication with mixed precision decomposition +- LLM.int8() inference - 8-bit Optimizers: Adam, AdamW, RMSProp, LARS, LAMB (saves 75% memory) - Stable Embedding Layer: Improved stability through better initialization, and normalization - 8-bit quantization: Quantile, Linear, and Dynamic quantization @@ -24,28 +45,25 @@ Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particula ## Requirements & Installation Requirements: anaconda, cudatoolkit, pytorch -Hardware requirements: NVIDIA Maxwell GPU or newer (>=GTX 9XX) -Supported CUDA versions: 9.2 - 11.3 -The requirements can best be fulfilled by installing pytorch via anaconda. You can install PyTorch by following the ["Get Started"](https://pytorch.org/get-started/locally/) instructions on the official website. +Hardware requirements: + - LLM.int8(): NVIDIA Turing (RTX 20xx; T4) or Ampere GPU (RTX 30xx; A4-A100); (a GPU from 2018 or older). + - 8-bit optimizers and quantization: NVIDIA Maxwell GPU or newer (>=GTX 9XX). -bitsandbytes is compatible with all major PyTorch releases and cudatoolkit versions, but for now, you need to select the right version manually. To do this run: +Supported CUDA versions: 10.2 - 11.7 -```conda list | grep cudatoolkit``` +The requirements can best be fulfilled by installing pytorch via anaconda. You can install PyTorch by following the ["Get Started"](https://pytorch.org/get-started/locally/) instructions on the official website. -and take note of the Cuda version that you have installed. Then you can install bitsandbytes via: -```bash -# choices: {cuda92, cuda 100, cuda101, cuda102, cuda110, cuda111, cuda113} -# replace XXX with the respective number -pip install bitsandbytes-cudaXXX -``` +## Using bitsandbytes -To check if your installation was successful, you can execute the following command, which runs a single bnb Adam update. -``` -wget https://gist.githubusercontent.com/TimDettmers/1f5188c6ee6ed69d211b7fe4e381e713/raw/4d17c3d09ccdb57e9ab7eca0171f2ace6e4d2858/check_bnb_install.py && python check_bnb_install.py +### Using Int8 Matrix Multiplication + +For straight Int8 matrix multiplication with mixed precision decomposition you can use ``bnb.matmul(...)``. To enable mixed precision decomposition, use the threshold parameter: +```python +bnb.matmul(..., threshold=6.0) ``` -## Using bitsandbytes +For instructions how to use LLM.int8() inference layers in your own code, see the TL;DR above or for extended instruction see [this blog post](https://github.com/huggingface/transformers). ### Using the 8-bit Optimizers @@ -95,15 +113,23 @@ The majority of bitsandbytes is licensed under MIT, however portions of the proj We thank Fabio Cannizzo for his work on [FastBinarySearch](https://github.com/fabiocannizzo/FastBinarySearch) which we use for CPU quantization. -## Citation -If you found this library and 8-bit optimizers or quantization routines useful, please consider citing out work. +## How to cite us +If you found this library and found LLM.int8() useful, please consider citing our work: +``` +@article{dettmers2022llmint8, + title={LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale}, + author={Dettmers, Tim and Lewis, Mike and Belkada, Younes and Zettlemoyer, Luke}, + journal={arXiv preprint arXiv:2208.07339}, + year={2022} +} +``` + +For 8-bit optimizers or quantization routines please consider citing the following work. ``` -@misc{dettmers2021optim8bit, - title={8-bit Optimizers via Block-wise Quantization}, - author={Tim Dettmers and Mike Lewis and Sam Shleifer and Luke Zettlemoyer}, - year={2021}, - eprint={2110.02861}, - archivePrefix={arXiv}, - primaryClass={cs.LG} +@article{dettmers2022optimizers, + title={8-bit Optimizers via Block-wise Quantization}, + author={Dettmers, Tim and Lewis, Mike and Shleifer, Sam and Zettlemoyer, Luke}, + journal={9th International Conference on Learning Representations, ICLR}, + year={2022} } ``` |