summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--bitsandbytes/functional.py25
-rw-r--r--bitsandbytes/optim/optimizer.py14
-rw-r--r--csrc/kernels.cu18
-rw-r--r--csrc/kernels.cuh8
-rw-r--r--csrc/ops.cu16
-rw-r--r--csrc/ops.cuh5
-rw-r--r--csrc/pythonInterface.c18
-rw-r--r--tests/test_optim.py24
8 files changed, 86 insertions, 42 deletions
diff --git a/bitsandbytes/functional.py b/bitsandbytes/functional.py
index 65c697d..48ab40c 100644
--- a/bitsandbytes/functional.py
+++ b/bitsandbytes/functional.py
@@ -337,7 +337,7 @@ def optimizer_update_32bit(optimizer_name:str, g: Tensor, p: Tensor, state1: Ten
beta1: float, eps: float, step: int, lr: float,
state2: Tensor=None, beta2: float=0.0,
weight_decay: float=0.0, gnorm_scale: float=1.0,
- unorm_vec: Tensor=None, max_unorm: float=0.0) -> None:
+ unorm_vec: Tensor=None, max_unorm: float=0.0, skip_zeros=False) -> None:
'''
Performs an inplace optimizer update with one or two optimizer states.
@@ -369,6 +369,12 @@ def optimizer_update_32bit(optimizer_name:str, g: Tensor, p: Tensor, state1: Ten
Optimizer beta2.
gnorm_scale : float
The factor to rescale the gradient to the max clip value.
+ unorm_vec : torch.Tensor
+ The tensor for the update norm.
+ max_unorm : float
+ The maximum update norm relative to the weight norm.
+ skip_zeros : bool
+ Whether to skip zero-valued gradients or not (default: False).
'''
param_norm = 0.0
@@ -381,11 +387,11 @@ def optimizer_update_32bit(optimizer_name:str, g: Tensor, p: Tensor, state1: Ten
if g.dtype == torch.float32 and state1.dtype == torch.float32:
str2optimizer32bit[optimizer_name][0](get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm),
ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay),
- ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_int32(g.numel()))
+ ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()))
elif g.dtype == torch.float16 and state1.dtype == torch.float32:
str2optimizer32bit[optimizer_name][1](get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm),
ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay),
- ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_int32(g.numel()))
+ ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()))
else:
raise ValueError(f'Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}')
@@ -439,6 +445,10 @@ def optimizer_update_8bit(optimizer_name: str, g: Tensor, p: Tensor, state1: Ten
Max value for the next Adam update of the second state.
gnorm_scale : float
The factor to rescale the gradient to the max clip value.
+ unorm_vec : torch.Tensor
+ The tensor for the update norm.
+ max_unorm : float
+ The maximum update norm relative to the weight norm.
'''
param_norm = 0.0
@@ -468,19 +478,22 @@ def optimizer_update_8bit(optimizer_name: str, g: Tensor, p: Tensor, state1: Ten
def optimizer_update_8bit_blockwise(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Tensor,
beta1: float, beta2: float, eps: float,
step: int, lr: float, qmap1: Tensor, qmap2: Tensor,
- absmax1: Tensor, absmax2: Tensor, weight_decay: float=0.0, gnorm_scale: float=1.0) -> None:
+ absmax1: Tensor, absmax2: Tensor, weight_decay: float=0.0, gnorm_scale: float=1.0,
+ skip_zeros=False) -> None:
if g.dtype == torch.float32 and state1.dtype == torch.uint8:
str2optimizer8bit_blockwise[optimizer_name][0](get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2),
ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps),
ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2),
- get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_int32(g.numel()))
+ get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale),
+ ct.c_bool(skip_zeros), ct.c_int32(g.numel()))
elif g.dtype == torch.float16 and state1.dtype == torch.uint8:
str2optimizer8bit_blockwise[optimizer_name][1](get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2),
ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps),
ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2),
- get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_int32(g.numel()))
+ get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale),
+ ct.c_bool(skip_zeros), ct.c_int32(g.numel()))
else:
raise ValueError(f'Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}')
diff --git a/bitsandbytes/optim/optimizer.py b/bitsandbytes/optim/optimizer.py
index 6743c15..25512b1 100644
--- a/bitsandbytes/optim/optimizer.py
+++ b/bitsandbytes/optim/optimizer.py
@@ -220,6 +220,7 @@ class Optimizer8bit(torch.optim.Optimizer):
config['percentile_clipping'] = self.args.percentile_clipping
config['block_wise'] = self.args.block_wise
config['max_unorm'] = self.args.max_unorm
+ config['skip_zeros'] = self.args.skip_zeros
if (gindex, pindex) in self.mng.index2config:
config.update(self.mng.index2config[(gindex, pindex)])
@@ -234,7 +235,8 @@ class Optimizer8bit(torch.optim.Optimizer):
class Optimizer2State(Optimizer8bit):
def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0.0, optim_bits=32, args=None,
- min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0):
+ min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0,
+ skip_zeros=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
@@ -259,6 +261,7 @@ class Optimizer2State(Optimizer8bit):
args['percentile_clipping'] = percentile_clipping
args['block_wise'] = block_wise
args['max_unorm'] = max_unorm
+ args['skip_zeros'] = skip_zeros
self.args = MockArgs(args)
else:
@@ -355,7 +358,8 @@ class Optimizer2State(Optimizer8bit):
class Optimizer1State(Optimizer8bit):
def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8,
weight_decay=0.0, optim_bits=32, args=None,
- min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0):
+ min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0,
+ skip_zeros=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
@@ -377,6 +381,7 @@ class Optimizer1State(Optimizer8bit):
args['percentile_clipping'] = percentile_clipping
args['block_wise'] = block_wise
args['max_unorm'] = max_unorm
+ args['skip_zeros'] = skip_zeros
self.args = MockArgs(args)
else:
@@ -444,7 +449,8 @@ class Optimizer1State(Optimizer8bit):
if state['state1'].dtype == torch.float:
F.optimizer_update_32bit(self.optimizer_name, grad, p, state['state1'], config['betas'][0], config['eps'], step, config['lr'],
None, 0.0, config['weight_decay'], gnorm_scale,
- state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'])
+ state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'],
+ skip_zeros=False)
elif state['state1'].dtype == torch.uint8 and not config['block_wise']:
F.optimizer_update_8bit(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1],
@@ -457,4 +463,4 @@ class Optimizer1State(Optimizer8bit):
F.optimizer_update_8bit_blockwise(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1],
config['eps'], step, config['lr'],
state['qmap1'], None, state['absmax1'], None,
- config['weight_decay'], gnorm_scale=gnorm_scale)
+ config['weight_decay'], gnorm_scale=gnorm_scale, skip_zeros=False)
diff --git a/csrc/kernels.cu b/csrc/kernels.cu
index 66a2c99..f8f7b62 100644
--- a/csrc/kernels.cu
+++ b/csrc/kernels.cu
@@ -654,7 +654,7 @@ __launch_bounds__(TH, 1)
__global__ void kOptimizer32bit2State(T* g, T* p,
float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
const float beta1, const float beta2, const float eps, const float weight_decay,
- const int step, const float lr, const float gnorm_scale, const int n)
+ const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
{
const int n_full = ((TH*NUM_PER_THREAD)*(n/(TH*NUM_PER_THREAD))) + (n % (TH*NUM_PER_THREAD) == 0 ? 0 : (TH*NUM_PER_THREAD));
@@ -809,7 +809,7 @@ __launch_bounds__(TH, 1)
__global__ void kOptimizer32bit1State(T *g, T *p,
float *state1, float *unorm, const float max_unorm, const float param_norm,
const float beta1, const float eps, const float weight_decay,
- const int step, const float lr, const float gnorm_scale, const int n)
+ const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
{
const int n_full = ((TH*NUM_PER_THREAD)*(n/(TH*NUM_PER_THREAD))) + (n % (TH*NUM_PER_THREAD) == 0 ? 0 : (TH*NUM_PER_THREAD));
@@ -1383,7 +1383,7 @@ kOptimizerStatic8bit2StateBlockwise(T* p, T* __restrict__ const g, unsigned char
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
float* absmax1, float* absmax2,
float weight_decay,
- const float gnorm_scale, const int n)
+ const float gnorm_scale, const bool skip_zeros, const int n)
{
//const int n_full = n + (n%BLOCK_SIZE);
@@ -1555,7 +1555,7 @@ kOptimizerStatic8bit1StateBlockwise(T* p, T* __restrict__ const g, unsigned char
float* __restrict__ const quantiles1,
float* absmax1,
float weight_decay,
- const float gnorm_scale, const int n)
+ const float gnorm_scale, const bool skip_zeros, const int n)
{
//const int n_full = n + (n%BLOCK_SIZE);
@@ -1723,7 +1723,7 @@ MAKE_PreconditionOptimizer32bit1State(RMSPROP, float)
#define MAKE_Optimizer32bit1State(oname, gtype) \
template __global__ void kOptimizer32bit1State<gtype, oname>(gtype* g, gtype* p, float* state1, float *unorm, const float max_unorm, const float param_norm, \
- const float beta1, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const int n); \
+ const float beta1, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n); \
MAKE_Optimizer32bit1State(MOMENTUM, half)
MAKE_Optimizer32bit1State(MOMENTUM, float)
@@ -1740,9 +1740,9 @@ MAKE_PreconditionOptimizer32bit2State(ADAM, half)
MAKE_PreconditionOptimizer32bit2State(ADAM, float)
template __global__ void kOptimizer32bit2State<half, ADAM>(half* g, half* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
- const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const int n);
+ const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
template __global__ void kOptimizer32bit2State<float, ADAM>(float* g, float* p, float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
- const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const int n);
+ const float beta1, const float beta2, const float eps, const float weight_decay,const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
#define MAKE_PreconditionStatic8bit1State(oname, gtype) \
template __global__ void kPreconditionOptimizerStatic8bit1State<gtype, oname>(gtype* p, gtype* __restrict__ const g, unsigned char*__restrict__ const state1, \
@@ -1825,7 +1825,7 @@ template __global__ void kOptimizerStatic8bit2StateBlockwise<gtype, oname, block
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2, \
float* absmax1, float* absmax2, \
float weight_decay, \
- const float gnorm_scale, const int n); \
+ const float gnorm_scale, const bool skip_zeros, const int n); \
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, float, 2048, 8)
MAKE_OptimizerStatic8bit2StateBlockwise(ADAM, half, 2048, 8)
@@ -1838,7 +1838,7 @@ template __global__ void kOptimizerStatic8bit1StateBlockwise<gtype, oname, block
float* __restrict__ const quantiles1, \
float* absmax1, \
float weight_decay, \
- const float gnorm_scale, const int n); \
+ const float gnorm_scale, const bool skip_zeros, const int n); \
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, float, 2048, 8)
MAKE_OptimizerStatic8bit1StateBlockwise(MOMENTUM, half, 2048, 8)
diff --git a/csrc/kernels.cuh b/csrc/kernels.cuh
index 06ae1e4..0a3676c 100644
--- a/csrc/kernels.cuh
+++ b/csrc/kernels.cuh
@@ -27,7 +27,7 @@ template<typename T, int OPTIMIZER>
__global__ void kOptimizer32bit2State(T* g, T* p,
float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
const float beta1, const float beta2, const float eps, const float weight_decay,
- const int step, const float lr, const float gnorm_scale, const int n);
+ const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__global__ void kPreconditionOptimizer32bit1State(T* g, T* p,
@@ -39,7 +39,7 @@ template<typename T, int OPTIMIZER>
__global__ void kOptimizer32bit1State(T* g, T* p,
float* state1, float *unorm, const float max_unorm, const float param_norm,
const float beta1, const float eps, const float weight_decay,
- const int step, const float lr, const float gnorm_scale, const int n);
+ const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
template<typename T, int OPTIMIZER>
__global__ void
@@ -90,7 +90,7 @@ template<typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH> __global__ voi
T* p, T* __restrict__ const g, unsigned char* state1, unsigned char* state2,
const float beta1, const float beta2, const float eps, const int step, const float lr,
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
- float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, const int n);
+ float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, const bool skip_zeros, const int n);
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH> __global__ void kOptimizerStatic8bit1StateBlockwise(
T* p, T* __restrict__ const g, unsigned char* state1,
@@ -99,7 +99,7 @@ template<typename T, int OPTIMIZER, int BLOCK_SIZE, int N_PER_TH> __global__ voi
float* __restrict__ const quantiles1,
float* absmax1,
float weight_decay,
- const float gnorm_scale, const int n);
+ const float gnorm_scale, const bool skip_zeros, const int n);
template<typename T, int BLOCK_SIZE, int NUM_VALS> __global__ void kPercentileClipping(T * __restrict__ g, float *gnorm_vec, int step, const int n);
diff --git a/csrc/ops.cu b/csrc/ops.cu
index d460ab1..182d6e6 100644
--- a/csrc/ops.cu
+++ b/csrc/ops.cu
@@ -181,7 +181,7 @@ template<typename T> void dequantizeBlockwise(float *code, unsigned char *A, flo
template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
float* state1, float* state2, float *unorm, float max_unorm, float param_norm,
const float beta1, const float beta2, const float eps, const float weight_decay,
- const int step, const float lr, const float gnorm_scale, const int n)
+ const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n)
{
int blocks = n/4096;
blocks = n % 4096 == 0 ? blocks : blocks + 1;
@@ -194,7 +194,7 @@ template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
kPreconditionOptimizer32bit2State<T, OPTIMIZER, 4096, 8><<<blocks, 512>>>(g, p, state1, state2, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
- kOptimizer32bit2State<T, OPTIMIZER><<<blocks, 1024>>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
+ kOptimizer32bit2State<T, OPTIMIZER><<<blocks, 1024>>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
CUDA_CHECK_RETURN(cudaPeekAtLastError());
break;
case MOMENTUM:
@@ -206,7 +206,7 @@ template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
- kOptimizer32bit1State<T, OPTIMIZER><<<blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, eps, weight_decay, step, lr, gnorm_scale, n);
+ kOptimizer32bit1State<T, OPTIMIZER><<<blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
CUDA_CHECK_RETURN(cudaPeekAtLastError());
break;
}
@@ -259,7 +259,7 @@ template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g,
template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g,
unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,
- float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, int n)
+ float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n)
{
int blocks = 0;
@@ -269,7 +269,7 @@ template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g
blocks = n/BLOCKSIZE_2STATE;
blocks = n % BLOCKSIZE_2STATE == 0 ? blocks : blocks + 1;
kOptimizerStatic8bit2StateBlockwise<T, OPTIMIZER, BLOCKSIZE_2STATE, NUM_2STATE><<<blocks, BLOCKSIZE_2STATE/NUM_2STATE>>>(p, g, state1, state2, beta1, beta2, eps, step, lr,
- quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, n);
+ quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n);
CUDA_CHECK_RETURN(cudaPeekAtLastError());
break;
case MOMENTUM:
@@ -277,7 +277,7 @@ template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g
blocks = n/BLOCKSIZE_1STATE;
blocks = n % BLOCKSIZE_1STATE == 0 ? blocks : blocks + 1;
kOptimizerStatic8bit1StateBlockwise<T, OPTIMIZER, BLOCKSIZE_1STATE, NUM_1STATE><<<blocks, BLOCKSIZE_1STATE/NUM_1STATE>>>(p, g, state1, beta1, beta2, eps, step, lr,
- quantiles1, absmax1, weight_decay, gnorm_scale, n);
+ quantiles1, absmax1, weight_decay, gnorm_scale, skip_zeros, n);
CUDA_CHECK_RETURN(cudaPeekAtLastError());
break;
}
@@ -313,7 +313,7 @@ template void dequantizeBlockwise<float>(float *code, unsigned char *A, float *a
template void optimizer32bit<gtype, name>(gtype* g, gtype* p, \
float* state1, float* state2, float* unorm, float max_unorm, float param_norm, \
const float beta1, const float beta2, const float eps, const float weight_decay, \
- const int step, const float lr, const float gnorm_scale, const int n);
+ const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
MAKE_optimizer32bit(ADAM, half)
MAKE_optimizer32bit(ADAM, float)
@@ -342,7 +342,7 @@ MAKE_optimizerStatic8bit(RMSPROP, float)
#define MAKE_optimizerStatic8bitBlockwise(gtype, optim_name) \
template void optimizerStatic8bitBlockwise<gtype, optim_name>(gtype* p, gtype* g, \
unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr, \
- float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, int n); \
+ float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n); \
MAKE_optimizerStatic8bitBlockwise(half, ADAM);
MAKE_optimizerStatic8bitBlockwise(float, ADAM);
diff --git a/csrc/ops.cuh b/csrc/ops.cuh
index e6033cb..465b4a4 100644
--- a/csrc/ops.cuh
+++ b/csrc/ops.cuh
@@ -49,7 +49,7 @@ template<typename T> void dequantizeBlockwise(float *code, unsigned char *A, flo
template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
float* state1, float* state2, float *unorm, float max_unorm, float param_norm,
float beta1, float beta2, float eps, float weight_decay,
- int step, float lr, const float gnorm_scale, int n);
+ int step, float lr, const float gnorm_scale, bool skip_zeros, int n);
template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g, unsigned char* state1, unsigned char* state2,
float *unorm, float max_unorm, float param_norm,
@@ -62,7 +62,8 @@ template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g, unsigne
template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g,
unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,
- float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, int n);
+ float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale,
+ bool skip_zeros, int n);
template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step, const int n);
diff --git a/csrc/pythonInterface.c b/csrc/pythonInterface.c
index eacb849..67bf2e5 100644
--- a/csrc/pythonInterface.c
+++ b/csrc/pythonInterface.c
@@ -20,8 +20,8 @@ void estimateQuantiles_fp16(half *A, float *code, float offset, int n){ estimate
void fname##32bit_g##gbits(gtype *g, gtype *p, \
float* state1, float* state2, float *unorm, float max_unorm, float param_norm, \
const float beta1, const float beta2, const float eps, const float weight_decay, \
- const int step, const float lr, float gnorm_scale, const int n) \
-{ optimizer32bit<gtype, oname>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n); } \
+ const int step, const float lr, float gnorm_scale, bool skip_zeros, const int n) \
+{ optimizer32bit<gtype, oname>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n); } \
MAKE_FUNC32(momentum, MOMENTUM, float, 32)
MAKE_FUNC32(momentum, MOMENTUM, half, 16)
@@ -53,8 +53,8 @@ MAKE_FUNC8(rmsprop, RMSPROP, half, 16)
#define MAKE_BLOCKWISE8(fname, optim_name, gtype, gbits) \
void fname##_8bit_blockwise_fp##gbits(gtype* p, gtype* g, \
unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr, \
- float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, int n)\
-{ optimizerStatic8bitBlockwise<gtype, optim_name>(p, g, state1, state2, beta1, beta2, eps, step, lr, quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, n); }\
+ float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n)\
+{ optimizerStatic8bitBlockwise<gtype, optim_name>(p, g, state1, state2, beta1, beta2, eps, step, lr, quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n); }\
MAKE_BLOCKWISE8(adam, ADAM, half, 16)
MAKE_BLOCKWISE8(adam, ADAM, float, 32)
@@ -93,8 +93,8 @@ extern "C"
void c##name##32bit_g##gbits(gtype *g, gtype *p, \
float* state1, float* state2, float *unorm, float max_unorm, float param_norm, \
const float beta1, const float beta2, const float eps, const float weight_decay, \
- const int step, const float lr, const float gnorm_scale, const int n) \
- { name##32bit_g##gbits(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n); } \
+ const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n) \
+ { name##32bit_g##gbits(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n); } \
MAKE_CFUNC32(adam, float, 32)
MAKE_CFUNC32(adam, half, 16)
@@ -110,7 +110,7 @@ extern "C"
float eps, int step, float lr, \
float* quantiles1, float* quantiles2, \
float* max1, float* max2, float* new_max1, float* new_max2, \
- float weight_decay, float gnorm_scale, int n) \
+ float weight_decay, float gnorm_scale, bool skip_zeros, int n) \
{ \
name##_static_8bit_g##gbits(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr, \
quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n); \
@@ -126,8 +126,8 @@ extern "C"
#define MAKE_CBLOCKWISE8(fname, optim_name, gtype, gbits) \
void c##fname##_8bit_blockwise_fp##gbits(gtype* p, gtype* g, \
unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr, \
- float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, int n) \
- { fname##_8bit_blockwise_fp##gbits(p, g, state1, state2, beta1, beta2, eps, step, lr, quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, n); } \
+ float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n) \
+ { fname##_8bit_blockwise_fp##gbits(p, g, state1, state2, beta1, beta2, eps, step, lr, quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n); } \
MAKE_CBLOCKWISE8(adam, ADAM, half, 16)
MAKE_CBLOCKWISE8(adam, ADAM, float, 32)
diff --git a/tests/test_optim.py b/tests/test_optim.py
index 4d67b08..fc2456f 100644
--- a/tests/test_optim.py
+++ b/tests/test_optim.py
@@ -141,6 +141,7 @@ def test_global_config(dim1, dim2, gtype):
eps = 1e-8
bnb.optim.GlobalOptimManager.get_instance().initialize()
+ bnb.optim.GlobalOptimManager.get_instance().override_config(p2, 'skip_zeros', True)
bnb.optim.GlobalOptimManager.get_instance().override_config(p3, 'optim_bits', 8)
bnb.optim.GlobalOptimManager.get_instance().register_parameters([p1, p2, p3])
@@ -155,6 +156,8 @@ def test_global_config(dim1, dim2, gtype):
else:
atol, rtol = 1e-4, 1e-3
+ original_p2 = p2[mask].clone()
+
for i in range(50):
g1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + 0.001
g2 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + 0.001
@@ -163,11 +166,32 @@ def test_global_config(dim1, dim2, gtype):
p2.grad = g2
p3.grad = g3
+ if i > 30 and i % 10 == 0:
+ g1.data[mask] = 0.0
+ g2.data[mask] = 0.0
+ p1.grad = g1
+ p2.grad = g2
+ original_p1 = p1[mask].clone()
+ original_p2 = p2[mask].clone()
+ og_s1 = adam2.state[p2]['state1'][mask].clone()
+ og_s2 = adam2.state[p2]['state2'][mask].clone()
+ og_s11 = adam2.state[p1]['state1'][mask].clone()
+ og_s21 = adam2.state[p1]['state2'][mask].clone()
+
adam2.step()
assert adam2.state[p3]['state1'].dtype == torch.uint8
assert adam2.state[p3]['state2'].dtype == torch.uint8
+ if i > 30 and i % 10 == 0:
+ torch.testing.assert_allclose(original_p2, p2[mask])
+ torch.testing.assert_allclose(adam2.state[p2]['state1'][mask], og_s1)
+ torch.testing.assert_allclose(adam2.state[p2]['state2'][mask], og_s2)
+ assert ((p1[mask]- original_p1)==0.0).sum() < p1.numel()
+ assert ((adam2.state[p1]['state1'][mask]- og_s11)==0.0).sum() == 0.0
+ assert ((adam2.state[p1]['state2'][mask]- og_s21)==0.0).sum() == 0.0
+
+
dim1 = [1024]