diff options
Diffstat (limited to 'bitsandbytes/nn')
-rw-r--r-- | bitsandbytes/nn/modules.py | 13 |
1 files changed, 9 insertions, 4 deletions
diff --git a/bitsandbytes/nn/modules.py b/bitsandbytes/nn/modules.py index b222f54..ef7fefc 100644 --- a/bitsandbytes/nn/modules.py +++ b/bitsandbytes/nn/modules.py @@ -148,10 +148,12 @@ class Int8Params(torch.nn.Parameter): has_fp16_weights=False, CB=None, SCB=None, + SCBt=None, ): cls.has_fp16_weights = has_fp16_weights cls.CB = None cls.SCB = None + cls.SCBt = None if data is None: data = torch.empty(0) return torch.Tensor._make_subclass(cls, data, requires_grad) @@ -165,10 +167,10 @@ class Int8Params(torch.nn.Parameter): B = self.data.contiguous().half().cuda(device) CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B) del CBt - del SCBt self.data = CB setattr(self, "CB", CB) setattr(self, "SCB", SCB) + setattr(self, "SCBt", SCBt) return self @@ -210,6 +212,7 @@ class Int8Params(torch.nn.Parameter): ) new_param.CB = self.CB new_param.SCB = self.SCB + new_param.SCB = self.SCBt return new_param @@ -240,8 +243,10 @@ class Linear8bitLt(nn.Linear): def init_8bit_state(self): self.state.CB = self.weight.CB self.state.SCB = self.weight.SCB + self.state.SCBt = self.weight.SCBt self.weight.CB = None self.weight.SCB = None + self.weight.SCBt = None def forward(self, x): self.state.is_training = self.training @@ -255,11 +260,11 @@ class Linear8bitLt(nn.Linear): out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state) - if not self.state.has_fp16_weights and self.state.CB is not None: + # if not self.state.has_fp16_weights and self.state.CB is not None: # we converted 8-bit row major to turing/ampere format in the first inference pass # we no longer need the row-major weight - del self.state.CB - self.weight.data = self.state.CxB + # del self.state.CB + # self.weight.data = self.state.CxB return out |