diff options
Diffstat (limited to 'bitsandbytes')
-rw-r--r-- | bitsandbytes/__init__.py | 10 | ||||
-rw-r--r-- | bitsandbytes/functional.py | 531 | ||||
-rw-r--r-- | bitsandbytes/nn/__init__.py | 5 | ||||
-rw-r--r-- | bitsandbytes/nn/modules.py | 44 | ||||
-rw-r--r-- | bitsandbytes/optim/__init__.py | 10 | ||||
-rw-r--r-- | bitsandbytes/optim/adam.py | 28 | ||||
-rw-r--r-- | bitsandbytes/optim/lamb.py | 29 | ||||
-rw-r--r-- | bitsandbytes/optim/lars.py | 115 | ||||
-rw-r--r-- | bitsandbytes/optim/optimizer.py | 460 | ||||
-rw-r--r-- | bitsandbytes/optim/rmsprop.py | 37 | ||||
-rw-r--r-- | bitsandbytes/optim/sgd.py | 32 |
11 files changed, 1301 insertions, 0 deletions
diff --git a/bitsandbytes/__init__.py b/bitsandbytes/__init__.py new file mode 100644 index 0000000..6e29322 --- /dev/null +++ b/bitsandbytes/__init__.py @@ -0,0 +1,10 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +from .optim import adam +from .nn import modules +__pdoc__ = {'libBitsNBytes' : False, + 'optim.optimizer.Optimizer8bit': False, + 'optim.optimizer.MockArgs': False + } diff --git a/bitsandbytes/functional.py b/bitsandbytes/functional.py new file mode 100644 index 0000000..65c697d --- /dev/null +++ b/bitsandbytes/functional.py @@ -0,0 +1,531 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +import os +import random +import math +import ctypes as ct +import torch +from torch import Tensor +from typing import Tuple + +lib = ct.cdll.LoadLibrary(os.path.dirname(__file__) + '/libbitsandbytes.so') +name2qmap = {} + +''' C FUNCTIONS FOR OPTIMIZERS ''' + +str2optimizer32bit = {} +str2optimizer32bit['adam'] = (lib.cadam32bit_g32, lib.cadam32bit_g16) +str2optimizer32bit['momentum'] = (lib.cmomentum32bit_g32, lib.cmomentum32bit_g16) +str2optimizer32bit['rmsprop'] = (lib.crmsprop32bit_g32, lib.crmsprop32bit_g16) +str2optimizer32bit['lars'] = (lib.cmomentum32bit_g32, lib.cmomentum32bit_g16) +str2optimizer32bit['lamb'] = (lib.cadam32bit_g32, lib.cadam32bit_g16) + +str2optimizer8bit = {} +str2optimizer8bit['adam'] = (lib.cadam_static_8bit_g32, lib.cadam_static_8bit_g16) +str2optimizer8bit['momentum'] = (lib.cmomentum_static_8bit_g32, lib.cmomentum_static_8bit_g16) +str2optimizer8bit['rmsprop'] = (lib.crmsprop_static_8bit_g32, lib.crmsprop_static_8bit_g16) +str2optimizer8bit['lamb'] = (lib.cadam_static_8bit_g32, lib.cadam_static_8bit_g16) +str2optimizer8bit['lars'] = (lib.cmomentum_static_8bit_g32, lib.cmomentum_static_8bit_g16) + +str2optimizer8bit_blockwise = {} +str2optimizer8bit_blockwise['adam'] = (lib.cadam_8bit_blockwise_fp32, lib.cadam_8bit_blockwise_fp16) +str2optimizer8bit_blockwise['momentum'] = (lib.cmomentum_8bit_blockwise_fp32, lib.cmomentum_8bit_blockwise_fp16) +str2optimizer8bit_blockwise['rmsprop'] = (lib.crmsprop_8bit_blockwise_fp32, lib.crmsprop_8bit_blockwise_fp16) + +optimal_normal = [-0.9939730167388916, -0.8727636337280273, -0.8097418546676636, -0.7660024166107178, -0.7318882346153259, -0.6793879270553589, -0.657649040222168, -0.6385974884033203, -0.6211113333702087, -0.5901028513908386, -0.5762918591499329, -0.5630806684494019, -0.5509274005889893, -0.5394591689109802, -0.5283197164535522, -0.517780065536499, -0.5074946284294128, -0.4980469048023224, -0.48867011070251465, -0.48003149032592773, -0.47125306725502014, -0.4629971981048584, -0.4547359049320221, -0.446626216173172, -0.43902668356895447, -0.43158355355262756, -0.4244747757911682, -0.4173796474933624, -0.41038978099823, -0.4055633544921875, -0.4035947024822235, -0.39701032638549805, -0.39057496190071106, -0.38439232110977173, -0.3782760500907898, -0.3721940815448761, -0.3661896586418152, -0.3604033589363098, -0.354605108499527, -0.34892538189888, -0.34320303797721863, -0.3376772701740265, -0.3323028087615967, -0.3269782066345215, -0.32166096568107605, -0.316457599401474, -0.3112771809101105, -0.3061025142669678, -0.30106794834136963, -0.2961243987083435, -0.2912728488445282, -0.28644347190856934, -0.28165507316589355, -0.2769731283187866, -0.2722635865211487, -0.26779335737228394, -0.26314786076545715, -0.2586647868156433, -0.2541804611682892, -0.2496625930070877, -0.24527113139629364, -0.24097171425819397, -0.23659978806972504, -0.23218469321727753, -0.22799566388130188, -0.22380566596984863, -0.21965542435646057, -0.2154538631439209, -0.2113603949546814, -0.20735277235507965, -0.20334717631340027, -0.19932441413402557, -0.19530178606510162, -0.19136647880077362, -0.18736697733402252, -0.18337111175060272, -0.17951400578022003, -0.1757056713104248, -0.17182783782482147, -0.1680615097284317, -0.16431649029254913, -0.16053077578544617, -0.15685945749282837, -0.15298527479171753, -0.1493264138698578, -0.14566898345947266, -0.14188314974308014, -0.13819937407970428, -0.1344561129808426, -0.1306886374950409, -0.1271020770072937, -0.12346585839986801, -0.11981867253780365, -0.11614970862865448, -0.11256207525730133, -0.10889036953449249, -0.10525048524141312, -0.1016591489315033, -0.09824034571647644, -0.09469068050384521, -0.0911419615149498, -0.08773849159479141, -0.08416644483804703, -0.08071305602788925, -0.07720902562141418, -0.07371306419372559, -0.07019119709730148, -0.06673648208379745, -0.06329209357500076, -0.059800852090120316, -0.0564190037548542, -0.05296570807695389, -0.049522045999765396, -0.04609023034572601, -0.04262964054942131, -0.039246633648872375, -0.03577171266078949, -0.03236335143446922, -0.028855687007308006, -0.02542758360505104, -0.022069433704018593, -0.018754752352833748, -0.015386369079351425, -0.01194947212934494, -0.008439815603196621, -0.004995611496269703, -0.0016682245768606663, 0.0, 0.0015510577941313386, 0.005062474869191647, 0.008417150937020779, 0.011741090565919876, 0.015184164978563786, 0.018582714721560478, 0.02204744517803192, 0.025471193715929985, 0.02889077737927437, 0.0323684960603714, 0.03579240292310715, 0.039281025528907776, 0.0427563451230526, 0.04619763046503067, 0.04968220740556717, 0.05326594039797783, 0.05679265409708023, 0.060245808213949203, 0.06372645497322083, 0.06721872836351395, 0.0706876739859581, 0.0742349922657013, 0.07774098962545395, 0.08123527467250824, 0.08468879014253616, 0.08810535818338394, 0.09155989438295364, 0.09498448669910431, 0.0985206812620163, 0.10206405073404312, 0.10563778132200241, 0.10921968519687653, 0.11284469068050385, 0.11653254181146622, 0.12008969485759735, 0.12368203699588776, 0.1272617131471634, 0.13089501857757568, 0.134552001953125, 0.1382799744606018, 0.14194637537002563, 0.14563234150409698, 0.14930322766304016, 0.15303383767604828, 0.1567956507205963, 0.16050070524215698, 0.16431072354316711, 0.16813558340072632, 0.17204202711582184, 0.1758781224489212, 0.17973239719867706, 0.1836014688014984, 0.18753431737422943, 0.19138391315937042, 0.19535475969314575, 0.19931404292583466, 0.20333819091320038, 0.20738255977630615, 0.21152682602405548, 0.21568812429904938, 0.21978361904621124, 0.22393859922885895, 0.22814159095287323, 0.23241068422794342, 0.23675410449504852, 0.24123944342136383, 0.24569889903068542, 0.2500703036785126, 0.25904011726379395, 0.26349544525146484, 0.2682226300239563, 0.272907555103302, 0.2774306833744049, 0.28220856189727783, 0.2869136929512024, 0.2916390895843506, 0.29649388790130615, 0.30142995715141296, 0.3065022826194763, 0.3114383816719055, 0.31648796796798706, 0.3216581642627716, 0.32700115442276, 0.3322487473487854, 0.33778008818626404, 0.3431521952152252, 0.3487405776977539, 0.3543166518211365, 0.3601346015930176, 0.36605337262153625, 0.37217751145362854, 0.378179669380188, 0.3843980133533478, 0.3906566798686981, 0.39714935421943665, 0.40357843041419983, 0.4104187488555908, 0.4171563684940338, 0.42418959736824036, 0.43136918544769287, 0.4389212429523468, 0.44673123955726624, 0.45457619428634644, 0.4627031683921814, 0.47130417823791504, 0.4798591434955597, 0.48897242546081543, 0.4979848861694336, 0.5, 0.5076631307601929, 0.5177803635597229, 0.5282770991325378, 0.5392990112304688, 0.5506287813186646, 0.5632893443107605, 0.5764452815055847, 0.5903191566467285, 0.6051878333091736, 0.6209936141967773, 0.6382884979248047, 0.6573970913887024, 0.6795773506164551, 0.7037051916122437, 0.7327037453651428, 0.7677436470985413, 0.8111193776130676, 0.875165581703186, 1.0] + +optimal_half_normal = [0.0025565922260284424, 0.005811259150505066, 0.00961565226316452, 0.010822802782058716, 0.013123787939548492, 0.014242202043533325, 0.0143156498670578, 0.016469404101371765, 0.017666727304458618, 0.01773911714553833, 0.0199756920337677, 0.0210941880941391, 0.021161124110221863, 0.02451971173286438, 0.024580076336860657, 0.02685210108757019, 0.028012827038764954, 0.030198264867067337, 0.0302925705909729, 0.03136435151100159, 0.03374280035495758, 0.03487399220466614, 0.035243816673755646, 0.037192340940237045, 0.03822284936904907, 0.04164902865886688, 0.04173608124256134, 0.04401407018303871, 0.04508155584335327, 0.047482021152973175, 0.04756556823849678, 0.050963032990694046, 0.05196474492549896, 0.055417388677597046, 0.05793146416544914, 0.05799369141459465, 0.05887940526008606, 0.05895659327507019, 0.062420234084129333, 0.06493274495005608, 0.06499008461833, 0.06935599446296692, 0.07197384163737297, 0.07201516255736351, 0.07276943325996399, 0.07283210754394531, 0.07550075277686119, 0.07975354790687561, 0.07980883121490479, 0.08257630094885826, 0.0867777168750763, 0.08682405948638916, 0.08967285975813866, 0.09323835000395775, 0.09386616945266724, 0.09735457599163055, 0.09739077091217041, 0.10092401504516602, 0.10444298386573792, 0.10447832942008972, 0.10770941898226738, 0.10803905129432678, 0.11161200702190399, 0.1151546835899353, 0.11520349979400635, 0.11875157058238983, 0.11879390478134155, 0.1222602017223835, 0.122351735830307, 0.12240418791770935, 0.12594850733876228, 0.12597402930259705, 0.12602100148797035, 0.12960633635520935, 0.1296597123146057, 0.12966342642903328, 0.13227657973766327, 0.13325360417366028, 0.1333133578300476, 0.13691483438014984, 0.1371927298605442, 0.14066261053085327, 0.14088113978505135, 0.1447291411459446, 0.14805573225021362, 0.148526418954134, 0.15170684456825256, 0.15178103744983673, 0.15225710347294807, 0.1554398238658905, 0.15609459951519966, 0.15618794038891792, 0.1592724472284317, 0.1629735231399536, 0.16382690146565437, 0.16676269471645355, 0.16873238794505596, 0.17066434025764465, 0.17068277299404144, 0.1717144437134266, 0.17558929696679115, 0.17827065289020538, 0.17835864424705505, 0.18222273886203766, 0.18353315070271492, 0.18604370951652527, 0.18611834943294525, 0.1876586265861988, 0.18996606767177582, 0.19170701876282692, 0.19398853182792664, 0.19786442816257477, 0.19795633852481842, 0.20195159316062927, 0.2058800607919693, 0.2099103182554245, 0.2122517265379429, 0.21410366892814636, 0.21819619834423065, 0.22221362590789795, 0.22233009338378906, 0.22500130906701088, 0.2251257635653019, 0.22638091444969177, 0.23067741096019745, 0.23368822410702705, 0.2348879873752594, 0.2382080741226673, 0.2390350103378296, 0.2391497790813446, 0.24253453686833382, 0.24265171959996223, 0.2470107562839985, 0.24764248728752136, 0.24777774512767792, 0.2516774423420429, 0.256104726344347, 0.2564055472612381, 0.2607169933617115, 0.265461727976799, 0.26985861361026764, 0.2701106257736683, 0.2702729292213917, 0.274574413895607, 0.2750340588390827, 0.27919672429561615, 0.283704474568367, 0.28386808931827545, 0.28953738883137703, 0.2896753139793873, 0.29320384562015533, 0.29451676085591316, 0.295327290892601, 0.29802779853343964, 0.29818175733089447, 0.29972871020436287, 0.30290623009204865, 0.30305664241313934, 0.30486901476979256, 0.31299956142902374, 0.31518544629216194, 0.31790371239185333, 0.3205283172428608, 0.3230419009923935, 0.32595496252179146, 0.32612212374806404, 0.3282426446676254, 0.3283906430006027, 0.33146094158291817, 0.3316439874470234, 0.33365286886692047, 0.33723779395222664, 0.3390095978975296, 0.3427443392574787, 0.34853987768292427, 0.34869300201535225, 0.35457711294293404, 0.35537679493427277, 0.3604113645851612, 0.36124424636363983, 0.3665340431034565, 0.36667295172810555, 0.3727492541074753, 0.3729033060371876, 0.37888188660144806, 0.37907837703824043, 0.3792510814964771, 0.38557394221425056, 0.38573457673192024, 0.39108292758464813, 0.39911722019314766, 0.40589402988553047, 0.40604450181126595, 0.410498782992363, 0.4106704741716385, 0.4129834659397602, 0.4131447561085224, 0.4172855168581009, 0.4202354736626148, 0.4204071946442127, 0.43538858368992805, 0.4355536885559559, 0.4432900734245777, 0.44603554904460907, 0.4461968094110489, 0.451409537345171, 0.4598204083740711, 0.46002377942204475, 0.46178819239139557, 0.46868549659848213, 0.46995367109775543, 0.4868385046720505, 0.48702501133084297, 0.4958047419786453, 0.4960057884454727, 0.5051481872797012, 0.506847757846117, 0.5148334950208664, 0.5150565356016159, 0.5174009390175343, 0.5249751061201096, 0.5283288545906544, 0.5355450958013535, 0.539984006434679, 0.5467876642942429, 0.5522958822548389, 0.5584012717008591, 0.5706631988286972, 0.5836620181798935, 0.5836880058050156, 0.5942088551819324, 0.5975865572690964, 0.6102624125778675, 0.6124880760908127, 0.6286389082670212, 0.646102175116539, 0.6471664495766163, 0.665437325835228, 0.6687244363129139, 0.687017485499382, 0.6932839937508106, 0.7115348428487778, 0.7218200154602528, 0.7219699807465076, 0.7747527211904526, 0.7749756425619125, 0.8192005604505539, 0.8194110840559006, 0.8830635994672775, 0.9217727445065975, 0.9245667457580566, 0.947742685675621, 0.9674464613199234, 0.9890814647078514, 0.9891453236341476, 0.9925699159502983] + +def create_linear_map(signed=True): + if signed: + return torch.linspace(-1.0, 1.0, 256) + else: + return torch.linspace(0.0, 1.0, 256) + +def create_dynamic_map(signed=True, n=7): + ''' + Creates the dynamic quantiztion map. + + The dynamic data type is made up of a dynamic exponent and + fraction. As the exponent increase from 0 to -7 the number + of bits available for the fraction shrinks. + + This is a generalization of the dynamic type where a certain + number of the bits and be reserved for the linear quantization + region (the fraction). n determines the maximum number of + exponent bits. + + For more details see + (8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561] + ''' + + data = [] + # these are additional items that come from the case + # where all the exponent bits are zero and no + # indicator bit is present + additional_items = 2**(7-n)-1 + if not signed: additional_items = 2*additional_items + for i in range(n): + fraction_items = 2**(i+7-n)+1 if signed else 2**(i+7-n+1)+1 + boundaries = torch.linspace(0.1, 1, fraction_items) + means = (boundaries[:-1]+boundaries[1:])/2.0 + data += ((10**(-(n-1)+i))*means).tolist() + if signed: + data += (-(10**(-(n-1)+i))*means).tolist() + + if additional_items > 0: + boundaries = torch.linspace(0.1, 1, additional_items+1) + means = (boundaries[:-1]+boundaries[1:])/2.0 + data += ((10**(-(n-1)+i))*means).tolist() + if signed: + data += (-(10**(-(n-1)+i))*means).tolist() + + data.append(0) + data.append(1.0) + data.sort() + return Tensor(data) + +def get_ptr(A: Tensor) -> ct.c_void_p: + ''' + Get the ctypes pointer from a PyTorch Tensor. + + Parameters + ---------- + A : torch.tensor + The PyTorch tensor. + + Returns + ------- + ctypes.c_void_p + ''' + if A is None: return None + else: return ct.c_void_p(A.data.storage().data_ptr()) + +def estimate_quantiles(A: Tensor, out: Tensor=None, offset: float=1/512) -> Tensor: + ''' + Estimates 256 equidistant quantiles on the input tensor eCDF. + + Uses SRAM-Quantiles algorithm to quickly estimate 256 equidistant quantiles + via the eCDF of the input tensor `A`. This is a fast but approximate algorithm + and the extreme quantiles close to 0 and 1 have high variance / large estimation + errors. These large errors can be avoided by using the offset variable which trims + the distribution. The default offset value of 1/512 ensures minimum entropy encoding -- it + trims 1/512 = 0.2% from each side of the distrivution. An offset value of 0.01 to 0.02 + usually has a much lower error but is not a minimum entropy encoding. Given an offset + of 0.02 equidistance points in the range [0.02, 0.98] are used for the quantiles. + + Parameters + ---------- + A : torch.Tensor + The input tensor. Any shape. + out : torch.Tensor + Tensor with the 256 estimated quantiles. + offset : float + The offset for the first and last quantile from 0 and 1. Default: 1/512 + + Returns + ------- + torch.Tensor: + The 256 quantiles in float32 datatype. + ''' + if out is None: out = torch.zeros((256,), dtype=torch.float32, device=A.device) + if A.dtype == torch.float32: + lib.cestimate_quantiles_fp32(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel())) + elif A.dtype == torch.float16: + lib.cestimate_quantiles_fp16(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel())) + else: + raise NotImplementError(f'Not supported data type {A.dtype}') + return out + +def quantize_blockwise(A: Tensor, code: Tensor=None, absmax: Tensor=None, rand=None, out: Tensor=None) -> Tensor: + ''' + Quantize tensor A in blocks of size 4096 values. + + Quantizes tensor A by dividing it into blocks of 4096 values. + Then the absolute maximum value within these blocks is calculated + for the non-linear quantization. + + Parameters + ---------- + A : torch.Tensor + The input tensor. + code : torch.Tensor + The quantization map. + absmax : torch.Tensor + The absmax values. + rand : torch.Tensor + The tensor for stochastic rounding. + out : torch.Tensor + The output tensor (8-bit). + + Returns + ------- + torch.Tensor: + The 8-bit tensor. + tuple(torch.Tensor, torch.Tensor): + The quantization state to undo the quantization. + ''' + + if code is None: + if 'dynamic' not in name2qmap: name2qmap['dynamic'] = create_dynamic_map().to(A.device) + code = name2qmap['dynamic'] + code = code.to(A.device) + + if absmax is None: + n = A.numel() + num_blocks = 4096 + blocks = n//num_blocks + blocks += 1 if n % num_blocks > 0 else 0 + absmax = torch.zeros((blocks,), device=A.device) + + if out is None: out = torch.zeros_like(A, dtype=torch.uint8) + + + if A.device.type != 'cpu': + if rand is not None: + assert rand.numel() >= 1024 + rand_offset = random.randint(0, 1023) + if A.dtype == torch.float32: + lib.cquantize_blockwise_stochastic_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel())) + elif A.dtype == torch.float16: + lib.cquantize_blockwise_stochastic_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel())) + else: + raise ValueError(f'Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}') + else: + if A.dtype == torch.float32: + lib.cquantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(A.numel())) + elif A.dtype == torch.float16: + lib.cquantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(A.numel())) + else: + raise ValueError(f'Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}') + else: + # cpu + assert rand is None + lib.cquantize_blockwise_cpu_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(A.numel())) + + return out, (absmax, code) + +def dequantize_blockwise(A: Tensor, quant_state: Tuple[Tensor, Tensor]=None, + absmax: Tensor=None, code: Tensor=None, out: Tensor=None, + blocksize: int=4096) -> Tensor: + ''' + Dequantizes blockwise quantized values. + + Dequantizes the tensor A with maximum absolute values absmax in + blocks of size 4096. + + Parameters + ---------- + A : torch.Tensor + The input 8-bit tensor. + quant_state : tuple(torch.Tensor, torch.Tensor) + Tuple of code and absmax values. + absmax : torch.Tensor + The absmax values. + code : torch.Tensor + The quantization map. + out : torch.Tensor + Dequantized output tensor (default: float32) + + + Returns + ------- + torch.Tensor: + Dequantized tensor (default: float32) + ''' + assert quant_state is not None or absmax is not None + if code is None and quant_state is None: + if 'dynamic' not in name2qmap: name2qmap['dynamic'] = create_dynamic_map().to(A.device) + code = name2qmap['dynamic'] + code = code.to(A.device) + + if out is None: out = torch.zeros_like(A, dtype=torch.float32) + if quant_state is None: quant_state = (absmax, code) + + if blocksize not in [2048, 4096]: + raise ValueError(f'The blockwise of {blocksize} is not supported. Supported values: [2048 4096]') + + if A.device.type != 'cpu': + if out.dtype == torch.float32: + lib.cdequantize_blockwise_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) + elif out.dtype == torch.float16: + lib.cdequantize_blockwise_fp16(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) + else: + raise ValueError(f'Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}') + else: + lib.cdequantize_blockwise_cpu_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_int(A.numel())) + + + return out + + +def quantize(A: Tensor, code: Tensor=None, out: Tensor=None) -> Tensor: + if code is None: + if 'dynamic' not in name2qmap: name2qmap['dynamic'] = create_dynamic_map().to(A.device) + code = name2qmap['dynamic'] + code = code.to(A.device) + + absmax = torch.abs(A).max() + inp = A/absmax + out = quantize_no_absmax(inp, code, out) + return out, (absmax, code) + +def dequantize(A: Tensor, quant_state: Tuple[Tensor, Tensor]=None, absmax: Tensor=None, code: Tensor=None, out: Tensor=None) -> Tensor: + assert quant_state is not None or absmax is not None + if code is None and quant_state is None: + if 'dynamic' not in name2qmap: name2qmap['dynamic'] = create_dynamic_map().to(A.device) + code = name2qmap['dynamic'] + code = code.to(A.device) + + if quant_state is None: quant_state = (absmax, code) + out = dequantize_no_absmax(A, quant_state[1], out) + return out*quant_state[0] + +def quantize_no_absmax(A: Tensor, code: Tensor, out: Tensor=None) -> Tensor: + ''' + Quantizes input tensor to 8-bit. + + Quantizes the 32-bit input tensor `A` to the 8-bit output tensor + `out` using the quantization map `code`. + + Parameters + ---------- + A : torch.Tensor + The input tensor. + code : torch.Tensor + The quantization map. + out : torch.Tensor, optional + The output tensor. Needs to be of type byte. + + Returns + ------- + torch.Tensor: + Quantized 8-bit tensor. + ''' + if out is None: out = torch.zeros_like(A, dtype=torch.uint8) + lib.cquantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel())) + return out + +def dequantize_no_absmax(A: Tensor, code: Tensor, out: Tensor=None) -> Tensor: + ''' + Dequantizes the 8-bit tensor to 32-bit. + + Dequantizes the 8-bit tensor `A` to the 32-bit tensor `out` via + the quantization map `code`. + + Parameters + ---------- + A : torch.Tensor + The 8-bit input tensor. + code : torch.Tensor + The quantization map. + out : torch.Tensor + The 32-bit output tensor. + + Returns + ------- + torch.Tensor: + 32-bit output tensor. + ''' + if out is None: out = torch.zeros_like(A, dtype=torch.float32) + lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel())) + return out + +def optimizer_update_32bit(optimizer_name:str, g: Tensor, p: Tensor, state1: Tensor, + beta1: float, eps: float, step: int, lr: float, + state2: Tensor=None, beta2: float=0.0, + weight_decay: float=0.0, gnorm_scale: float=1.0, + unorm_vec: Tensor=None, max_unorm: float=0.0) -> None: + ''' + Performs an inplace optimizer update with one or two optimizer states. + + Universal optimizer update for 32-bit state and 32/16-bit gradients/weights. + + Parameters + ---------- + optimizer_name : str + The name of the optimizer: {adam}. + g : torch.Tensor + Gradient tensor. + p : torch.Tensor + Parameter tensor. + state1 : torch.Tensor + Optimizer state 1. + beta1 : float + Optimizer beta1. + eps : float + Optimizer epsilon. + weight_decay : float + Weight decay. + step : int + Current optimizer step. + lr : float + The learning rate. + state2 : torch.Tensor + Optimizer state 2. + beta2 : float + Optimizer beta2. + gnorm_scale : float + The factor to rescale the gradient to the max clip value. + ''' + + param_norm = 0.0 + if max_unorm > 0.0: + param_norm = torch.norm(p.data.float()) + + if optimizer_name not in str2optimizer32bit: + raise NotImplementError(f'Optimizer not implemented: {optimizer_name}. Choices: {",".join(str2optimizer32bit.keys())}') + + if g.dtype == torch.float32 and state1.dtype == torch.float32: + str2optimizer32bit[optimizer_name][0](get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), + ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), + ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_int32(g.numel())) + elif g.dtype == torch.float16 and state1.dtype == torch.float32: + str2optimizer32bit[optimizer_name][1](get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), + ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), + ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_int32(g.numel())) + else: + raise ValueError(f'Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}') + +def optimizer_update_8bit(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Tensor, + beta1: float, beta2: float, eps: float, + step: int, lr: float, qmap1: Tensor, qmap2: Tensor, + max1: Tensor, max2: Tensor, new_max1: Tensor, new_max2: Tensor, + weight_decay: float=0.0, gnorm_scale: float=1.0, + unorm_vec: Tensor=None, max_unorm: float=0.0) -> None: + ''' + Performs an inplace Adam update. + + Universal Adam update for 32/8-bit state and 32/16-bit gradients/weights. + Uses AdamW formulation if weight decay > 0.0. + + Parameters + ---------- + optimizer_name : str + The name of the optimizer. Choices {adam, momentum} + g : torch.Tensor + Gradient tensor. + p : torch.Tensor + Parameter tensor. + state1 : torch.Tensor + Adam state 1. + state2 : torch.Tensor + Adam state 2. + beta1 : float + Adam beta1. + beta2 : float + Adam beta2. + eps : float + Adam epsilon. + weight_decay : float + Weight decay. + step : int + Current optimizer step. + lr : float + The learning rate. + qmap1 : torch.Tensor + Quantization map for first Adam state. + qmap2 : torch.Tensor + Quantization map for second Adam state. + max1 : torch.Tensor + Max value for first Adam state update. + max2 : torch.Tensor + Max value for second Adam state update. + new_max1 : torch.Tensor + Max value for the next Adam update of the first state. + new_max2 : torch.Tensor + Max value for the next Adam update of the second state. + gnorm_scale : float + The factor to rescale the gradient to the max clip value. + ''' + + param_norm = 0.0 + if max_unorm > 0.0: + param_norm = torch.norm(p.data.float()) + + if g.dtype == torch.float32 and state1.dtype == torch.uint8: + str2optimizer8bit[optimizer_name][0](get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), + get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), + ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), + ct.c_int32(step), ct.c_float(lr), + get_ptr(qmap1), get_ptr(qmap2), + get_ptr(max1), get_ptr(max2), get_ptr(new_max1), get_ptr(new_max2), + ct.c_float(weight_decay),ct.c_float(gnorm_scale), ct.c_int32(g.numel())) + elif g.dtype == torch.float16 and state1.dtype == torch.uint8: + str2optimizer8bit[optimizer_name][1](get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), + get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), + ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), + ct.c_int32(step), ct.c_float(lr), + get_ptr(qmap1), get_ptr(qmap2), + get_ptr(max1), get_ptr(max2), get_ptr(new_max1), get_ptr(new_max2), + ct.c_float(weight_decay),ct.c_float(gnorm_scale), ct.c_int32(g.numel())) + else: + raise ValueError(f'Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}') + + +def optimizer_update_8bit_blockwise(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Tensor, + beta1: float, beta2: float, eps: float, + step: int, lr: float, qmap1: Tensor, qmap2: Tensor, + absmax1: Tensor, absmax2: Tensor, weight_decay: float=0.0, gnorm_scale: float=1.0) -> None: + + + if g.dtype == torch.float32 and state1.dtype == torch.uint8: + str2optimizer8bit_blockwise[optimizer_name][0](get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), + ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), + ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), + get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_int32(g.numel())) + elif g.dtype == torch.float16 and state1.dtype == torch.uint8: + str2optimizer8bit_blockwise[optimizer_name][1](get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), + ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), + ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), + get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_int32(g.numel())) + else: + raise ValueError(f'Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}') + + +def percentile_clipping(grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int=5): + """Applies percentile clipping + + grad: torch.Tensor + The gradient tensor. + gnorm_vec: torch.Tensor + Vector of gradient norms. 100 elements expected. + step: int + The current optimiation steps (number of past gradient norms). + + """ + if grad.dtype == torch.float32: + lib.cpercentile_clipping_g32(get_ptr(grad), get_ptr(gnorm_vec), ct.c_int32(step), ct.c_int32(grad.numel())) + elif grad.dtype == torch.float16: + lib.cpercentile_clipping_g16(get_ptr(grad), get_ptr(gnorm_vec), ct.c_int32(step), ct.c_int32(grad.numel())) + else: + raise ValueError(f'Gradient type {grad.dtype} not supported!') + + current_gnorm = torch.sqrt(gnorm_vec[step % 100]) + vals, idx = torch.sort(gnorm_vec) + clip_value = torch.sqrt(vals[percentile]) + gnorm_scale = 1.0 + + if current_gnorm > clip_value: + gnorm_scale = clip_value/current_gnorm + + return current_gnorm, clip_value, gnorm_scale + + +def histogram_scatter_add_2d(histogram: Tensor, index1: Tensor, index2: Tensor, source: Tensor): + assert len(histogram.shape) == 2 + assert histogram.dtype == torch.float32 + assert source.dtype == torch.float32 + assert index1.dtype == torch.int32 + assert index2.dtype == torch.int32 + + assert histogram.device.type == 'cuda' + assert index1.device.type == 'cuda' + assert index2.device.type == 'cuda' + assert source.device.type == 'cuda' + + maxdim1 = ct.c_int32(histogram.shape[0]) + n = ct.c_int32(index1.numel()) + lib.chistogram_scatter_add_2d(get_ptr(histogram), get_ptr(index1), get_ptr(index2), get_ptr(source), maxdim1, n) diff --git a/bitsandbytes/nn/__init__.py b/bitsandbytes/nn/__init__.py new file mode 100644 index 0000000..177540f --- /dev/null +++ b/bitsandbytes/nn/__init__.py @@ -0,0 +1,5 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +from .modules import StableEmbedding diff --git a/bitsandbytes/nn/modules.py b/bitsandbytes/nn/modules.py new file mode 100644 index 0000000..bf0945c --- /dev/null +++ b/bitsandbytes/nn/modules.py @@ -0,0 +1,44 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +import torch + +from typing import Optional + +from torch import Tensor +from torch.nn.parameter import Parameter +import torch.nn.functional as F + +from bitsandbytes.optim import GlobalOptimManager + +class StableEmbedding(torch.nn.Embedding): + def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, + max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False, + sparse: bool = True, _weight: Optional[Tensor] = None) -> None: + super(StableEmbedding, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, False, _weight) + self.norm = torch.nn.LayerNorm(embedding_dim) + GlobalOptimManager.get_instance().register_parameters(self.weight) + GlobalOptimManager.get_instance().override_config(self.weight, 'optim_bits', 32) + + def reset_parameters(self) -> None: + torch.nn.init.xavier_uniform_(self.weight) + self._fill_padding_idx_with_zero() + + ''' !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding + to make the Layer compatible with Pytorch < 1.9. + This means that if this changes in future PyTorch releases this need to change too + which is cumbersome. However, with this we can ensure compatibility with previous + PyTorch releases. + ''' + def _fill_padding_idx_with_zero(self) -> None: + if self.padding_idx is not None: + with torch.no_grad(): + self.weight[self.padding_idx].fill_(0) + + def forward(self, input: Tensor) -> Tensor: + emb = F.embedding( + input, self.weight, self.padding_idx, self.max_norm, + self.norm_type, self.scale_grad_by_freq, self.sparse) + + return self.norm(emb) diff --git a/bitsandbytes/optim/__init__.py b/bitsandbytes/optim/__init__.py new file mode 100644 index 0000000..92c83b1 --- /dev/null +++ b/bitsandbytes/optim/__init__.py @@ -0,0 +1,10 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +from .adam import Adam, Adam8bit, Adam32bit +from .sgd import SGD, SGD8bit, SGD32bit +from .lars import LARS, LARS8bit, LARS32bit, PytorchLARS +from .lamb import LAMB, LAMB8bit, LAMB32bit +from .rmsprop import RMSprop, RMSprop8bit, RMSprop32bit +from .optimizer import GlobalOptimManager diff --git a/bitsandbytes/optim/adam.py b/bitsandbytes/optim/adam.py new file mode 100644 index 0000000..99a6d10 --- /dev/null +++ b/bitsandbytes/optim/adam.py @@ -0,0 +1,28 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +from bitsandbytes.optim.optimizer import Optimizer2State + +class Adam(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, + weight_decay=0, amsgrad=False, optim_bits=32, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super(Adam, self).__init__('adam', params, lr, betas, eps, + weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise) + +class Adam8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, + weight_decay=0, amsgrad=False, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super(Adam8bit, self).__init__('adam', params, lr, betas, eps, + weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise) + +class Adam32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, + weight_decay=0, amsgrad=False, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=True): + super(Adam32bit, self).__init__('adam', params, lr, betas, eps, + weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise) + + diff --git a/bitsandbytes/optim/lamb.py b/bitsandbytes/optim/lamb.py new file mode 100644 index 0000000..b8d4b1e --- /dev/null +++ b/bitsandbytes/optim/lamb.py @@ -0,0 +1,29 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +import apex +from bitsandbytes.optim.optimizer import Optimizer2State + +class LAMB(Optimizer2State): + def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, + weight_decay=0, amsgrad=False, adam_w_mode=True, optim_bits=32, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0): + super(LAMB, self).__init__('lamb', params, lr, betas, eps, + weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, max_unorm=1.0) + +class LAMB8bit(Optimizer2State): + def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, + weight_decay=0, amsgrad=False, adam_w_mode=True, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0): + super(LAMB8bit, self).__init__('lamb', params, lr, betas, eps, + weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, max_unorm=1.0) + +class LAMB32bit(Optimizer2State): + def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, + weight_decay=0, amsgrad=False, adam_w_mode=True, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0): + super(LAMB32bit, self).__init__('lamb', params, lr, betas, eps, + weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, max_unorm=1.0) + + diff --git a/bitsandbytes/optim/lars.py b/bitsandbytes/optim/lars.py new file mode 100644 index 0000000..40dede7 --- /dev/null +++ b/bitsandbytes/optim/lars.py @@ -0,0 +1,115 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +import torch + +from torch.optim import Optimizer +from bitsandbytes.optim.optimizer import Optimizer1State + +class LARS(Optimizer1State): + def __init__(self, params, lr, momentum=0, dampening=0, + weight_decay=0, nesterov=False, optim_bits=32, args=None, + min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02): + if momentum == 0: + raise NotImplementError(f'LARS without momentum is not supported!') + super(LARS, self).__init__('lars', params, lr, (momentum, dampening), 0.0, + weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False) + +class LARS8bit(Optimizer1State): + def __init__(self, params, lr, momentum=0, dampening=0, + weight_decay=0, nesterov=False, args=None, + min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02): + if momentum == 0: + raise NotImplementError(f'LARS without momentum is not supported!') + super(LARS8bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0, + weight_decay, 8, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False) + +class LARS32bit(Optimizer1State): + def __init__(self, params, lr, momentum=0, dampening=0, + weight_decay=0, nesterov=False, args=None, + min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02): + if momentum == 0: + raise NotImplementError(f'LARS without momentum is not supported!') + super(LARS32bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0, + weight_decay, 32, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False) + + +class PytorchLARS(Optimizer): + def __init__(self, params, lr=0.01, momentum=0, dampening=0, + weight_decay=0, nesterov=False, max_unorm=0.02): + if lr < 0.0: + raise ValueError("Invalid learning rate: {}".format(lr)) + if momentum < 0.0: + raise ValueError("Invalid momentum value: {}".format(momentum)) + if weight_decay < 0.0: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + + defaults = dict(lr=lr, momentum=momentum, dampening=dampening, + weight_decay=weight_decay, nesterov=nesterov, max_unorm=max_unorm) + if nesterov and (momentum <= 0 or dampening != 0): + raise ValueError("Nesterov momentum requires a momentum and zero dampening") + super(PytorchLARS, self).__init__(params, defaults) + + def __setstate__(self, state): + super(PytorchLARS, self).__setstate__(state) + for group in self.param_groups: + group.setdefault('nesterov', False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Args: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad = [] + d_p_list = [] + momentum_buffer_list = [] + weight_decay = group['weight_decay'] + momentum = group['momentum'] + dampening = group['dampening'] + nesterov = group['nesterov'] + max_unorm = group['max_unorm'] + lr = group['lr'] + + for p in group['params']: + if p.grad is None: continue + + state = self.state[p] + d_p = p.grad + if weight_decay != 0: + d_p = d_p.add(param, alpha=weight_decay) + + if momentum != 0: + buf = state.get('momentum_buffer', None) + + if buf is None: + buf = torch.clone(d_p).detach() + state['momentum_buffer']= buf + else: + buf.mul_(momentum).add_(d_p, alpha=1 - dampening) + + if nesterov: + update = d_p + buf*momentum + else: + update = buf + + update_scale = 1.0 + if max_unorm > 0.0: + assert p.dtype == torch.float32 + pnorm = torch.norm(p.detach()) + unorm = torch.norm(update) + if unorm > max_unorm*pnorm: + update_scale = max_unorm*pnorm/unorm + + p.add_(update, alpha=-lr*update_scale) + + return loss diff --git a/bitsandbytes/optim/optimizer.py b/bitsandbytes/optim/optimizer.py new file mode 100644 index 0000000..6743c15 --- /dev/null +++ b/bitsandbytes/optim/optimizer.py @@ -0,0 +1,460 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +import torch +import bitsandbytes.functional as F + +from copy import deepcopy +from itertools import chain +from collections import defaultdict, abc as container_abcs + +class MockArgs(object): + def __init__(self, initial_data): + for key in initial_data: + setattr(self, key, initial_data[key]) + + +class GlobalOptimManager(object): + _instance = None + + def __init__(self): + raise RuntimeError('Call get_instance() instead') + + def initialize(self): + self.pid2config = {} + self.index2config = {} + self.optimizer = None + self.uses_config_override = False + + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + + def register_parameters(self, params): + param_groups = list(params) + if not isinstance(param_groups[0], dict): + param_groups = [{'params': param_groups}] + + for group_index, group in enumerate(param_groups): + for p_index, p in enumerate(group['params']): + if id(p) in self.pid2config: + self.index2config[(group_index, p_index)] = self.pid2config[id(p)] + + def override_config(self, parameters, key=None, value=None, key_value_dict=None): + ''' + Overrides initial optimizer config for specific parameters. + + The key-values of the optimizer config for the input parameters are overidden + This can be both, optimizer parameters like "betas", or "lr" or it can be + 8-bit specific paramters like "optim_bits", "percentile_clipping". + + Parameters + ---------- + parameters : torch.Tensor or list(torch.Tensors) + The input parameters. + key : str + The hyperparamter to override. + value : object + The value for the hyperparamters. + key_value_dict : dict + A dictionary with multiple key-values to override. + ''' + self.uses_config_override = True + if isinstance(parameters, torch.nn.Parameter): + parameters = [parameters] + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + if key is not None and value is not None: + assert key_value_dict is None + key_value_dict = {key: value} + + if key_value_dict is not None: + for p in parameters: + if id(p) in self.pid2config:self.pid2config[id(p)].update(key_value_dict) + else: self.pid2config[id(p)] = key_value_dict + + +class Optimizer8bit(torch.optim.Optimizer): + + def __init__(self, params, defaults, optim_bits=32): + super(Optimizer8bit, self).__init__(params, defaults) + self.checked_if_on_gpu = False + self.name2qmap = {} + + self.mng = GlobalOptimManager.get_instance() + self.non_castable_tensor_keys = set( + ['qmap1', 'qmap2', + 'max1', 'max2', + 'new_max1', 'new_max2', + 'state1', 'state2', + 'gnorm_vec', 'absmax1', 'absmax2', + 'unorm_vec']) + + if optim_bits == 8: self.fill_qmap() + + def fill_qmap(self): + self.name2qmap['dynamic'] = F.create_dynamic_map(signed=True) + self.name2qmap['udynamic'] = F.create_dynamic_map(signed=False) + + def __setstate__(self, state): + super(Optimizer8bit, self).__setstate__(state) + + + def load_state_dict(self, state_dict): + r"""Loads the optimizer state. + + Args: + state_dict (dict): optimizer state. Should be an object returned + from a call to :meth:`state_dict`. + """ + # deepcopy, to be consistent with module API + state_dict = deepcopy(state_dict) + # Validate the state_dict + groups = self.param_groups + saved_groups = state_dict['param_groups'] + + if len(groups) != len(saved_groups): + raise ValueError("loaded state dict has a different number of " + "parameter groups") + param_lens = (len(g['params']) for g in groups) + saved_lens = (len(g['params']) for g in saved_groups) + if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): + raise ValueError("loaded state dict contains a parameter group " + "that doesn't match the size of optimizer's group") + + # Update the state + id_map = {old_id: p for old_id, p in + zip(chain.from_iterable((g['params'] for g in saved_groups)), + chain.from_iterable((g['params'] for g in groups)))} + + def cast(param, value): + r"""Make a deep copy of value, casting all tensors to device of param.""" + if isinstance(value, torch.Tensor): + # Floating-point types are a bit special here. They are the only ones + # that are assumed to always match the type of params. + if param.is_floating_point() and value.dtype != torch.uint8: + value = value.to(param.dtype) + return value + elif isinstance(value, dict): + for k, v in value.items(): + if k in self.non_castable_tensor_keys: + value[k] = v.to(param.device) + else: + value[k] = cast(param, v) + + return value + elif isinstance(value, container_abcs.Iterable): + return type(value)(cast(param, v) for v in value) + else: + return value + + # Copy state assigned to params (and cast tensors to appropriate types). + # State that is not assigned to params is copied as is (needed for + # backward compatibility). + state = defaultdict(dict) + for k, v in state_dict['state'].items(): + if k in id_map: + param = id_map[k] + state[param] = cast(param, v) + else: + state[k] = v + + # Update parameter groups, setting their 'params' value + def update_group(group, new_group): + new_group['params'] = group['params'] + return new_group + param_groups = [ + update_group(g, ng) for g, ng in zip(groups, saved_groups)] + self.__setstate__({'state': state, 'param_groups': param_groups}) + + def to_gpu(self): + self.checked_if_on_gpu = True + for gindex, group in enumerate(self.param_groups): + for pindex, p in enumerate(group['params']): + if p in self.state: + values = self.state[p] + for k, v in values.items(): + if isinstance(v, torch.Tensor): + self.state[p][k] = v.to(p.device) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + overflows = [] + + if not self.checked_if_on_gpu: self.to_gpu() # needed for fairseq pure fp16 training + for gindex, group in enumerate(self.param_groups): + for pindex, p in enumerate(group['params']): + if p.grad is None: + continue + state = self.state[p] + if len(state) == 0: + self.init_state(group, p, gindex, pindex) + + self.update_step(group, p, gindex, pindex) + + return loss + + def get_config(self, gindex, pindex, group): + config = {} + config['betas'] = group['betas'] + config['eps'] = group['eps'] + config['weight_decay'] = group['weight_decay'] + config['lr'] = group['lr'] + config['optim_bits'] = self.args.optim_bits + config['min_8bit_size'] = self.args.min_8bit_size + config['percentile_clipping'] = self.args.percentile_clipping + config['block_wise'] = self.args.block_wise + config['max_unorm'] = self.args.max_unorm + + if (gindex, pindex) in self.mng.index2config: + config.update(self.mng.index2config[(gindex, pindex)]) + return config + + def init_state(self, group, p, gindex, pindex): + raise NotImplementedError(f'init_state method needs to be overidden') + + def update_step(self, group, p, gindex, pindex): + raise NotImplementedError(f'The update_step method needs to be overidden') + +class Optimizer2State(Optimizer8bit): + def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, + weight_decay=0.0, optim_bits=32, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if isinstance(betas, str): + betas = eval(betas) + print(betas, 'parsed') + for i in range(len(betas)): + if not 0.0 <= betas[i] < 1.0: + raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}") + if not 0.0 <= weight_decay: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + defaults = dict(lr=lr, betas=betas, eps=eps, + weight_decay=weight_decay) + super(Optimizer2State, self).__init__(params, defaults, optim_bits) + + if args is None: + args = {} + args['optim_bits'] = optim_bits + args['percentile_clipping'] = 100 + args['min_8bit_size'] = min_8bit_size + args['percentile_clipping'] = percentile_clipping + args['block_wise'] = block_wise + args['max_unorm'] = max_unorm + + self.args = MockArgs(args) + else: + self.args = args + + self.optimizer_name = optimizer_name + + @torch.no_grad() + def init_state(self, group, p, gindex, pindex): + config = self.get_config(gindex, pindex, group) + + if config['optim_bits'] == 32: + dtype = torch.float32 + elif config['optim_bits'] == 8: + dtype = torch.uint8 + else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') + + if p.numel() < config['min_8bit_size']: dtype = torch.float32 + + state = self.state[p] + state['step'] = 0 + + if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096): + state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device) + state['state2'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device) + elif dtype == torch.uint8: + if state['step'] == 0: + if 'dynamic' not in self.name2qmap: self.fill_qmap() + self.name2qmap['dynamic'] = self.name2qmap['dynamic'].to(p.device) + self.name2qmap['udynamic'] = self.name2qmap['udynamic'].to(p.device) + + state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device) + state['qmap1'] = self.name2qmap['dynamic'] + + state['state2'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device) + state['qmap2'] = self.name2qmap['udynamic'] + + if config['block_wise']: + n = p.numel() + blocks = n//2048 + blocks += 1 if n % 2048 > 0 else 0 + + state['absmax1'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) + state['absmax2'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) + else: + state['max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device) + state['new_max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device) + state['max2'] = torch.zeros((1,), dtype=torch.float32, device=p.device) + state['new_max2'] = torch.zeros((1,), dtype=torch.float32, device=p.device) + + if config['percentile_clipping'] < 100: + state['gnorm_vec'] = torch.zeros((100,), device=p.device) + + if config['max_unorm'] > 0.0: + state['unorm_vec'] = torch.zeros((1,), device=p.device) + + @torch.no_grad() + def update_step(self, group, p, gindex, pindex): + state = self.state[p] + grad = p.grad + + config = self.get_config(gindex, pindex, group) + + state['step'] += 1 + step = state['step'] + + if config['percentile_clipping'] < 100: + current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(grad, state['gnorm_vec'], step, config['percentile_clipping']) + else: + gnorm_scale = 1.0 + + if state['state1'].dtype == torch.float: + F.optimizer_update_32bit(self.optimizer_name, grad, p, state['state1'], config['betas'][0], config['eps'], step, config['lr'], + state['state2'], config['betas'][1], config['weight_decay'], gnorm_scale, + state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm']) + + elif state['state1'].dtype == torch.uint8 and not config['block_wise']: + F.optimizer_update_8bit(self.optimizer_name, grad, p, state['state1'], state['state2'], config['betas'][0], config['betas'][1], + config['eps'], step, config['lr'], + state['qmap1'], state['qmap2'], state['max1'], state['max2'], state['new_max1'], state['new_max2'], + config['weight_decay'], gnorm_scale=gnorm_scale, + unorm_vec=state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm']) + + # swap maxes + state['max1'], state['new_max1'] = state['new_max1'], state['max1'] + state['max2'], state['new_max2'] = state['new_max2'], state['max2'] + elif state['state1'].dtype == torch.uint8 and config['block_wise']: + F.optimizer_update_8bit_blockwise(self.optimizer_name, grad, p, state['state1'], state['state2'], config['betas'][0], config['betas'][1], + config['eps'], step, config['lr'], + state['qmap1'], state['qmap2'], state['absmax1'], state['absmax2'], + config['weight_decay'], gnorm_scale=gnorm_scale) + + +class Optimizer1State(Optimizer8bit): + def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, + weight_decay=0.0, optim_bits=32, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + for i in range(len(betas)): + if not 0.0 <= betas[i] < 1.0: + raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}") + if not 0.0 <= weight_decay: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + defaults = dict(lr=lr, betas=betas, eps=eps, + weight_decay=weight_decay) + super(Optimizer1State, self).__init__(params, defaults, optim_bits) + + if args is None: + args = {} + args['optim_bits'] = optim_bits + args['percentile_clipping'] = 100 + args['min_8bit_size'] = min_8bit_size + args['percentile_clipping'] = percentile_clipping + args['block_wise'] = block_wise + args['max_unorm'] = max_unorm + + self.args = MockArgs(args) + else: + self.args = args + + self.optimizer_name = optimizer_name + + @torch.no_grad() + def init_state(self, group, p, gindex, pindex): + config = self.get_config(gindex, pindex, group) + + if config['optim_bits'] == 32: + dtype = torch.float32 + elif config['optim_bits'] == 8: + dtype = torch.uint8 + else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}') + + if p.numel() < config['min_8bit_size']: dtype = torch.float32 + + state = self.state[p] + state['step'] = 0 + + if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096): + state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device) + elif dtype == torch.uint8: + if state['step'] == 0: + if 'dynamic' not in self.name2qmap: self.fill_qmap() + self.name2qmap['dynamic'] = self.name2qmap['dynamic'].to(p.device) + + state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device) + state['qmap1'] = self.name2qmap['dynamic'] + + if config['block_wise']: + n = p.numel() + blocks = n//2048 + blocks += 1 if n % 2048 > 0 else 0 + + state['absmax1'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device) + else: + state['max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device) + state['new_max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device) + + if config['percentile_clipping'] < 100: + state['gnorm_vec'] = torch.zeros((100,), device=p.device) + + if config['max_unorm'] > 0.0: + state['unorm_vec'] = torch.zeros((1,), device=p.device) + + + @torch.no_grad() + def update_step(self, group, p, gindex, pindex): + state = self.state[p] + grad = p.grad + + config = self.get_config(gindex, pindex, group) + + state['step'] += 1 + step = state['step'] + + if config['percentile_clipping'] < 100: + current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(grad, state['gnorm_vec'], step, config['percentile_clipping']) + else: + gnorm_scale = 1.0 + + if state['state1'].dtype == torch.float: + F.optimizer_update_32bit(self.optimizer_name, grad, p, state['state1'], config['betas'][0], config['eps'], step, config['lr'], + None, 0.0, config['weight_decay'], gnorm_scale, + state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm']) + + elif state['state1'].dtype == torch.uint8 and not config['block_wise']: + F.optimizer_update_8bit(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1], + config['eps'], step, config['lr'], state['qmap1'], None, state['max1'], None, state['new_max1'], None, + config['weight_decay'], gnorm_scale, + state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm']) + + state['max1'], state['new_max1'] = state['new_max1'], state['max1'] + elif state['state1'].dtype == torch.uint8 and config['block_wise']: + F.optimizer_update_8bit_blockwise(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1], + config['eps'], step, config['lr'], + state['qmap1'], None, state['absmax1'], None, + config['weight_decay'], gnorm_scale=gnorm_scale) diff --git a/bitsandbytes/optim/rmsprop.py b/bitsandbytes/optim/rmsprop.py new file mode 100644 index 0000000..99b718e --- /dev/null +++ b/bitsandbytes/optim/rmsprop.py @@ -0,0 +1,37 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +import torch +from bitsandbytes.optim.optimizer import Optimizer1State + +class RMSprop(Optimizer1State): + def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, optim_bits=32, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=True): + if alpha == 0: + raise NotImplementError(f'RMSprop with alpha==0.0 is not supported!') + if centered: + raise NotImplementError(f'Centered RMSprop is not supported!') + super(RMSprop, self).__init__('rmsprop', params, lr, (alpha, momentum), eps, + weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise) + +class RMSprop8bit(Optimizer1State): + def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=True): + if alpha == 0: + raise NotImplementError(f'RMSprop with alpha==0.0 is not supported!') + if centered: + raise NotImplementError(f'Centered RMSprop is not supported!') + super(RMSprop8bit, self).__init__('rmsprop', params, lr, (alpha, momentum), eps, + weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise) + +class RMSprop32bit(Optimizer1State): + def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=True): + + if alpha == 0: + raise NotImplementError(f'RMSprop with alpha==0.0 is not supported!') + if centered: + raise NotImplementError(f'Centered RMSprop is not supported!') + super(RMSprop32bit, self).__init__('rmsprop', params, lr, (alpha, momentum), eps, + weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise) diff --git a/bitsandbytes/optim/sgd.py b/bitsandbytes/optim/sgd.py new file mode 100644 index 0000000..926d804 --- /dev/null +++ b/bitsandbytes/optim/sgd.py @@ -0,0 +1,32 @@ +# Copyright (c) Facebook, Inc. and its affiliates. +# +# This source code is licensed under the MIT license found in the +# LICENSE file in the root directory of this source tree. +from bitsandbytes.optim.optimizer import Optimizer1State + +class SGD(Optimizer1State): + def __init__(self, params, lr, momentum=0, dampening=0, + weight_decay=0, nesterov=False, optim_bits=32, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=True): + if momentum == 0: + raise NotImplementError(f'SGD without momentum is not supported!') + super(SGD, self).__init__('momentum', params, lr, (momentum, dampening), 0.0, + weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise) + +class SGD8bit(Optimizer1State): + def __init__(self, params, lr, momentum=0, dampening=0, + weight_decay=0, nesterov=False, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=True): + if momentum == 0: + raise NotImplementError(f'SGD without momentum is not supported!') + super(SGD8bit, self).__init__('momentum', params, lr, (momentum, dampening), 0.0, + weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise) + +class SGD32bit(Optimizer1State): + def __init__(self, params, lr, momentum=0, dampening=0, + weight_decay=0, nesterov=False, args=None, + min_8bit_size=4096, percentile_clipping=100, block_wise=True): + if momentum == 0: + raise NotImplementError(f'SGD without momentum is not supported!') + super(SGD32bit, self).__init__('momentum', params, lr, (momentum, dampening), 0.0, + weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise) |