diff options
Diffstat (limited to 'bitsandbytes')
-rw-r--r-- | bitsandbytes/__init__.py | 3 | ||||
-rw-r--r-- | bitsandbytes/autograd/__init__.py | 0 | ||||
-rw-r--r-- | bitsandbytes/autograd/_functions.py | 307 | ||||
-rw-r--r-- | bitsandbytes/cextension.py | 2 | ||||
-rw-r--r-- | bitsandbytes/functional.py | 869 | ||||
-rw-r--r-- | bitsandbytes/nn/__init__.py | 2 | ||||
-rw-r--r-- | bitsandbytes/nn/modules.py | 124 |
7 files changed, 1301 insertions, 6 deletions
diff --git a/bitsandbytes/__init__.py b/bitsandbytes/__init__.py index 02ca804..3c3affa 100644 --- a/bitsandbytes/__init__.py +++ b/bitsandbytes/__init__.py @@ -4,12 +4,13 @@ # LICENSE file in the root directory of this source tree. from .nn import modules +from .autograd._functions import mm_cublas, bmm_cublas, matmul_cublas, matmul, MatmulLtState from .cextension import COMPILED_WITH_CUDA if COMPILED_WITH_CUDA: from .optim import adam -__pdoc__ = {'libBitsNBytes': False, +__pdoc__ = {'libbitsandbytes': False, 'optim.optimizer.Optimizer8bit': False, 'optim.optimizer.MockArgs': False } diff --git a/bitsandbytes/autograd/__init__.py b/bitsandbytes/autograd/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/bitsandbytes/autograd/__init__.py diff --git a/bitsandbytes/autograd/_functions.py b/bitsandbytes/autograd/_functions.py new file mode 100644 index 0000000..815a4f1 --- /dev/null +++ b/bitsandbytes/autograd/_functions.py @@ -0,0 +1,307 @@ +import torch +import bitsandbytes as bnb +import bitsandbytes.functional as F + +from dataclasses import dataclass + +tensor = torch.Tensor + +''' + This class pools outlier dimensions across layers. + This is particularly important for small models where outlier features + are less systematic and occur with low frequency. +''' +class GlobalOutlierPooler(object): + _instance = None + + def __init__(self): + raise RuntimeError('Call get_instance() instead') + + def initialize(self): + self.outliers = set() + self.model_dim = None + + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + + def add_outliers(self, outlier_idx, feature_dim): + if self.model_dim is None: self.model_dim = feature_dim + if feature_dim != self.model_dim: return # we do not encode outliers for the 2nd FFN layer + + self.outliers.update(outlier_idx.tolist()) + + def get_current_outlier_idx(self): + return torch.Tensor(list(self.outliers)).to(torch.int64) + +class MatMul8bit(torch.autograd.Function): + + @staticmethod + def forward(ctx, A, B, out=None, quant_type='vector', precision=[8, 8, 8]): + + if precision[0] != 8: + with torch.no_grad(): + output = torch.matmul(A, B) + else: + if len(B.shape) == 2: dim = 0 + else: dim = 1 + qA, SA = F.vectorwise_quant(A, dim=-1, quant_type=quant_type) + qB, SB = F.vectorwise_quant(B, dim=dim, quant_type=quant_type) + iout = F.igemm(qA, qB) + output = F.vectorwise_mm_dequant(iout, SA, SB, A.dtype, quant_type) + + if A.requires_grad or B.requires_grad: + ctx.save_for_backward(A, B) + + ctx.quant_type = quant_type + ctx.precision = precision + + return output + + @staticmethod + def backward(ctx, grad_output): + A, B = ctx.saved_tensors + quant_type = ctx.quant_type + precision = ctx.precision + grad_A = grad_B = None + + if B.requires_grad: + if len(A.shape) == 3: + dims = [0, 1] + # bsi -> ibs + permute_dim = [0, 2, 1] + else: + dims = [0] + # bs -> sb + permute_dim = [1, 0] + + if precision[1] != 8: + with torch.no_grad(): + grad_B = torch.matmul(A.permute(permute_dim), grad_output) + else: + if len(B.shape) == 2 and len(A.shape) == 3: + grad_output = grad_output.contiguous() + if not grad_output.is_contiguous(): grad_output.contiguous() + qgrad_output, S1 = F.vectorwise_quant(grad_output.view(-1, grad_output.shape[2]), dim=0, quant_type=quant_type) + if not A.is_contiguous(): A = A.contiguous() + qA, S2 = F.vectorwise_quant(A.view(-1, A.shape[2]), dim=0, quant_type=quant_type) + igrad_B = F.igemm(qA.t(), qgrad_output) + grad_B = F.vectorwise_mm_dequant(igrad_B, S2.t(), S1, grad_output.dtype, quant_type) + else: + qgrad_output, S1 = F.vectorwise_quant(grad_output, dim=dims, quant_type=quant_type) + qA, S2 = F.vectorwise_quant(A, dim=dims, quant_type=quant_type) + igrad_B = F.igemm(qA.permute(permute_dim), qgrad_output) + grad_B = F.vectorwise_mm_dequant(igrad_B, S2.permute(permute_dim), S1, grad_output.dtype, quant_type) + + if A.requires_grad: + if len(grad_output.shape) == 3: dims = [2] + else: dims = [1] + + if len(B.shape) == 3: + # bio -> boi + permute_dim = [0, 2, 1] + dim_B = dims + else: + # io -> oi + permute_dim = [1, 0] + dim_B = [1] + + if precision[2] != 8: + with torch.no_grad(): + grad_A = torch.matmul(grad_output, B.permute(permute_dim)) + else: + qgrad_output, S1 = F.vectorwise_quant(grad_output, dim=dims, quant_type=quant_type) + qB, S3 = F.vectorwise_quant(B, dim=dim_B, quant_type=quant_type) + igrad_A = F.igemm(qgrad_output, qB.permute(permute_dim)) + grad_A = F.vectorwise_mm_dequant(igrad_A, S1, S3.permute(permute_dim), grad_output.dtype, quant_type) + + return grad_A, grad_B, None, None, None + + +mm_cublas = MatMul8bit.apply +bmm_cublas = MatMul8bit.apply +matmul_cublas = MatMul8bit.apply + +@dataclass +class MatmulLtState: + CB = None + CxB = None + SB = None + SCB = None + + CxBt = None + SBt = None + CBt = None + + subB = None + + outlier_pool = None + has_accumulated_gradients = False + threshold = 0.0 + idx = None + is_training = True + has_fp16_weights = True + use_pool = False + formatB = F.get_special_format_str() + + def reset_grads(self): + self.CB = None + self.CxB = None + self.SB = None + self.SCB = None + + self.CxBt = None + self.SBt = None + self.CBt = None + + +class MatMul8bitLt(torch.autograd.Function): + + @staticmethod + def forward(ctx, A, B, out=None, state=MatmulLtState()): + # 1. Quantize A + # 2. Quantize B + # 3. Matmul + # 4. Mixed-precision decomposition matmul + # 5. Save state + requires_gradA = A.requires_grad + requires_gradB = B.requires_grad + formatB = state.formatB + input_shape = A.shape + if state.outlier_pool is None: state.outlier_pool = GlobalOutlierPooler.get_instance() + assert A.dtype == torch.float16, f'The input data type needs to be fp16 but {A.dtype} was found!' + + # 1. Quantize A + if len(A.shape) == 3: A = A.view(-1, A.shape[-1]).contiguous() + CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=state.threshold) + + if state.threshold > 0.0 and coo_tensorA is not None: + if state.has_fp16_weights: + idx = torch.unique(coo_tensorA.colidx).long() + CA[:, idx] = 0 + CAt[:, idx] = 0 + subA = A[:, idx] + state.subB = B[:, idx].t().contiguous() + state.idx = idx + else: + if state.CxB is None: + # B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions + # we also need to convert it to the turing/ampere format + state.CxB, state.SB = F.transform(state.CB, to_order=formatB) + if state.threshold > 0.0 and coo_tensorA is not None and state.idx is None and state.CB is not None: + # generate outlier index and subB + outlier_idx = torch.unique(coo_tensorA.colidx).long() + state.outlier_pool.add_outliers(outlier_idx, A.shape[-1]) + if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]: + # do not use pool for 2nd FFN layer + state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device) + else: + state.idx = outlier_idx + state.subB = (state.CB[:, state.idx].float().t().contiguous()*(state.SCB/127)).half() + + if state.idx is not None: + # extract outliers + CA[:, state.idx] = 0 + CAt[:, state.idx] = 0 + subA = A[:, state.idx] + else: + subA = None + else: + if not state.has_fp16_weights and state.CxB is None: + state.CxB, state.SB = F.transform(state.CB, to_order=formatB) + subA = None + + C32A, SA = F.transform(CA, 'col32') + + # 2. Quantize B + if state.has_fp16_weights: + has_grad = (True if (getattr(B, 'grad', None) is not None) else False) + is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1) + if is_transposed: B = B.contiguous() + + if (state.is_training and not has_grad) or state.CxB is None: + state.reset_grads() + CB, state.CBt, state.SCB, state.SCBt, coo_tensorB = F.double_quant(B) + state.CxB, state.SB = F.transform(CB, to_order=formatB) + else: + has_grad = False + + shapeB = state.SB[0] + + if len(input_shape) == 3: + output_shape = (input_shape[0], input_shape[1], shapeB[0]) + else: + output_shape = (input_shape[0], shapeB[0]) + + # 3. Matmul + out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB) + output = F.mm_dequant(out32, Sout32, SCA, state.SCB) + + # 4. Mixed-precision decomposition matmul + if state.threshold > 0.0 and coo_tensorA is not None and subA is not None: + output += torch.matmul(subA, state.subB) + + # 5. Save state + ctx.state = state + + ctx.formatB = formatB + ctx.grad_shape = input_shape + ctx.req_grads = [requires_gradA, requires_gradB] + + if requires_gradA or requires_gradB: + ctx.tensors = (CAt, subA) + ctx.tensor_states = (SCAt, state.idx) + else: + ctx.tensors = [None, None] + ctx.tensor_states = (None, None) + ctx.save_for_backward(None, None) + + #clone_func = torch.clone if len(output_shape) == 3 else lambda x : x + clone_func = torch.clone + return clone_func(output.view(output_shape)) + + @staticmethod + def backward(ctx, grad_output): + req_gradA, req_gradB = ctx.req_grads + CAt, subA = ctx.tensors + SCAt, idx = ctx.tensor_states + formatB = ctx.formatB + state = ctx.state + assert state.has_fp16_weights, 'Backprop only supported for fp16 weights.' + + if len(grad_output.shape) == 3: + grad_output = grad_output.view(-1, grad_output.shape[-1]).contiguous() + + grad_A = grad_B = None + + Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output) + if req_gradB: + CxAt, SAt = F.transform(CAt, formatB, transpose=True) + C32grad, Sgrad = F.transform(Cgradt, 'col32', transpose=True) + gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt) + grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt) + if state.threshold > 0.0 and subA is not None: + grad_B[:, idx] += torch.matmul(grad_output.t(), subA) + + if req_gradA: + C32grad, Sgrad = F.transform(Cgrad, 'col32') + if state.CxBt is None: + state.CxBt, state.SBt = F.transform(state.CBt, to_order=formatB, transpose=True) + gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt) + grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape) + + return grad_A, grad_B, None, None, None, None, None + + +matmul = MatMul8bitLt.apply + + +def matmul(A : tensor, B : tensor, out : tensor=None, state : MatmulLtState = None, threshold=0.0): + state = state or MatmulLtState() + if threshold > 0.0: + state.threshold = threshold + return MatMul8bitLt.apply(A, B, out, state) + diff --git a/bitsandbytes/cextension.py b/bitsandbytes/cextension.py index 63d627e..2374c35 100644 --- a/bitsandbytes/cextension.py +++ b/bitsandbytes/cextension.py @@ -6,6 +6,8 @@ lib = ct.cdll.LoadLibrary(os.path.dirname(__file__) + '/libbitsandbytes.so') try: lib.cadam32bit_g32 + lib.get_context.restype = ct.c_void_p + lib.get_cusparse.restype = ct.c_void_p COMPILED_WITH_CUDA = True except AttributeError: warn("The installed version of bitsandbytes was compiled without GPU support. " diff --git a/bitsandbytes/functional.py b/bitsandbytes/functional.py index ab4e565..806c254 100644 --- a/bitsandbytes/functional.py +++ b/bitsandbytes/functional.py @@ -36,9 +36,51 @@ if COMPILED_WITH_CUDA: str2optimizer8bit_blockwise['rmsprop'] = (lib.crmsprop_8bit_blockwise_fp32, lib.crmsprop_8bit_blockwise_fp16) str2optimizer8bit_blockwise['adagrad'] = (lib.cadagrad_8bit_blockwise_fp32, lib.cadagrad_8bit_blockwise_fp16) -optimal_normal = [-0.9939730167388916, -0.8727636337280273, -0.8097418546676636, -0.7660024166107178, -0.7318882346153259, -0.6793879270553589, -0.657649040222168, -0.6385974884033203, -0.6211113333702087, -0.5901028513908386, -0.5762918591499329, -0.5630806684494019, -0.5509274005889893, -0.5394591689109802, -0.5283197164535522, -0.517780065536499, -0.5074946284294128, -0.4980469048023224, -0.48867011070251465, -0.48003149032592773, -0.47125306725502014, -0.4629971981048584, -0.4547359049320221, -0.446626216173172, -0.43902668356895447, -0.43158355355262756, -0.4244747757911682, -0.4173796474933624, -0.41038978099823, -0.4055633544921875, -0.4035947024822235, -0.39701032638549805, -0.39057496190071106, -0.38439232110977173, -0.3782760500907898, -0.3721940815448761, -0.3661896586418152, -0.3604033589363098, -0.354605108499527, -0.34892538189888, -0.34320303797721863, -0.3376772701740265, -0.3323028087615967, -0.3269782066345215, -0.32166096568107605, -0.316457599401474, -0.3112771809101105, -0.3061025142669678, -0.30106794834136963, -0.2961243987083435, -0.2912728488445282, -0.28644347190856934, -0.28165507316589355, -0.2769731283187866, -0.2722635865211487, -0.26779335737228394, -0.26314786076545715, -0.2586647868156433, -0.2541804611682892, -0.2496625930070877, -0.24527113139629364, -0.24097171425819397, -0.23659978806972504, -0.23218469321727753, -0.22799566388130188, -0.22380566596984863, -0.21965542435646057, -0.2154538631439209, -0.2113603949546814, -0.20735277235507965, -0.20334717631340027, -0.19932441413402557, -0.19530178606510162, -0.19136647880077362, -0.18736697733402252, -0.18337111175060272, -0.17951400578022003, -0.1757056713104248, -0.17182783782482147, -0.1680615097284317, -0.16431649029254913, -0.16053077578544617, -0.15685945749282837, -0.15298527479171753, -0.1493264138698578, -0.14566898345947266, -0.14188314974308014, -0.13819937407970428, -0.1344561129808426, -0.1306886374950409, -0.1271020770072937, -0.12346585839986801, -0.11981867253780365, -0.11614970862865448, -0.11256207525730133, -0.10889036953449249, -0.10525048524141312, -0.1016591489315033, -0.09824034571647644, -0.09469068050384521, -0.0911419615149498, -0.08773849159479141, -0.08416644483804703, -0.08071305602788925, -0.07720902562141418, -0.07371306419372559, -0.07019119709730148, -0.06673648208379745, -0.06329209357500076, -0.059800852090120316, -0.0564190037548542, -0.05296570807695389, -0.049522045999765396, -0.04609023034572601, -0.04262964054942131, -0.039246633648872375, -0.03577171266078949, -0.03236335143446922, -0.028855687007308006, -0.02542758360505104, -0.022069433704018593, -0.018754752352833748, -0.015386369079351425, -0.01194947212934494, -0.008439815603196621, -0.004995611496269703, -0.0016682245768606663, 0.0, 0.0015510577941313386, 0.005062474869191647, 0.008417150937020779, 0.011741090565919876, 0.015184164978563786, 0.018582714721560478, 0.02204744517803192, 0.025471193715929985, 0.02889077737927437, 0.0323684960603714, 0.03579240292310715, 0.039281025528907776, 0.0427563451230526, 0.04619763046503067, 0.04968220740556717, 0.05326594039797783, 0.05679265409708023, 0.060245808213949203, 0.06372645497322083, 0.06721872836351395, 0.0706876739859581, 0.0742349922657013, 0.07774098962545395, 0.08123527467250824, 0.08468879014253616, 0.08810535818338394, 0.09155989438295364, 0.09498448669910431, 0.0985206812620163, 0.10206405073404312, 0.10563778132200241, 0.10921968519687653, 0.11284469068050385, 0.11653254181146622, 0.12008969485759735, 0.12368203699588776, 0.1272617131471634, 0.13089501857757568, 0.134552001953125, 0.1382799744606018, 0.14194637537002563, 0.14563234150409698, 0.14930322766304016, 0.15303383767604828, 0.1567956507205963, 0.16050070524215698, 0.16431072354316711, 0.16813558340072632, 0.17204202711582184, 0.1758781224489212, 0.17973239719867706, 0.1836014688014984, 0.18753431737422943, 0.19138391315937042, 0.19535475969314575, 0.19931404292583466, 0.20333819091320038, 0.20738255977630615, 0.21152682602405548, 0.21568812429904938, 0.21978361904621124, 0.22393859922885895, 0.22814159095287323, 0.23241068422794342, 0.23675410449504852, 0.24123944342136383, 0.24569889903068542, 0.2500703036785126, 0.25904011726379395, 0.26349544525146484, 0.2682226300239563, 0.272907555103302, 0.2774306833744049, 0.28220856189727783, 0.2869136929512024, 0.2916390895843506, 0.29649388790130615, 0.30142995715141296, 0.3065022826194763, 0.3114383816719055, 0.31648796796798706, 0.3216581642627716, 0.32700115442276, 0.3322487473487854, 0.33778008818626404, 0.3431521952152252, 0.3487405776977539, 0.3543166518211365, 0.3601346015930176, 0.36605337262153625, 0.37217751145362854, 0.378179669380188, 0.3843980133533478, 0.3906566798686981, 0.39714935421943665, 0.40357843041419983, 0.4104187488555908, 0.4171563684940338, 0.42418959736824036, 0.43136918544769287, 0.4389212429523468, 0.44673123955726624, 0.45457619428634644, 0.4627031683921814, 0.47130417823791504, 0.4798591434955597, 0.48897242546081543, 0.4979848861694336, 0.5, 0.5076631307601929, 0.5177803635597229, 0.5282770991325378, 0.5392990112304688, 0.5506287813186646, 0.5632893443107605, 0.5764452815055847, 0.5903191566467285, 0.6051878333091736, 0.6209936141967773, 0.6382884979248047, 0.6573970913887024, 0.6795773506164551, 0.7037051916122437, 0.7327037453651428, 0.7677436470985413, 0.8111193776130676, 0.875165581703186, 1.0] -optimal_half_normal = [0.0025565922260284424, 0.005811259150505066, 0.00961565226316452, 0.010822802782058716, 0.013123787939548492, 0.014242202043533325, 0.0143156498670578, 0.016469404101371765, 0.017666727304458618, 0.01773911714553833, 0.0199756920337677, 0.0210941880941391, 0.021161124110221863, 0.02451971173286438, 0.024580076336860657, 0.02685210108757019, 0.028012827038764954, 0.030198264867067337, 0.0302925705909729, 0.03136435151100159, 0.03374280035495758, 0.03487399220466614, 0.035243816673755646, 0.037192340940237045, 0.03822284936904907, 0.04164902865886688, 0.04173608124256134, 0.04401407018303871, 0.04508155584335327, 0.047482021152973175, 0.04756556823849678, 0.050963032990694046, 0.05196474492549896, 0.055417388677597046, 0.05793146416544914, 0.05799369141459465, 0.05887940526008606, 0.05895659327507019, 0.062420234084129333, 0.06493274495005608, 0.06499008461833, 0.06935599446296692, 0.07197384163737297, 0.07201516255736351, 0.07276943325996399, 0.07283210754394531, 0.07550075277686119, 0.07975354790687561, 0.07980883121490479, 0.08257630094885826, 0.0867777168750763, 0.08682405948638916, 0.08967285975813866, 0.09323835000395775, 0.09386616945266724, 0.09735457599163055, 0.09739077091217041, 0.10092401504516602, 0.10444298386573792, 0.10447832942008972, 0.10770941898226738, 0.10803905129432678, 0.11161200702190399, 0.1151546835899353, 0.11520349979400635, 0.11875157058238983, 0.11879390478134155, 0.1222602017223835, 0.122351735830307, 0.12240418791770935, 0.12594850733876228, 0.12597402930259705, 0.12602100148797035, 0.12960633635520935, 0.1296597123146057, 0.12966342642903328, 0.13227657973766327, 0.13325360417366028, 0.1333133578300476, 0.13691483438014984, 0.1371927298605442, 0.14066261053085327, 0.14088113978505135, 0.1447291411459446, 0.14805573225021362, 0.148526418954134, 0.15170684456825256, 0.15178103744983673, 0.15225710347294807, 0.1554398238658905, 0.15609459951519966, 0.15618794038891792, 0.1592724472284317, 0.1629735231399536, 0.16382690146565437, 0.16676269471645355, 0.16873238794505596, 0.17066434025764465, 0.17068277299404144, 0.1717144437134266, 0.17558929696679115, 0.17827065289020538, 0.17835864424705505, 0.18222273886203766, 0.18353315070271492, 0.18604370951652527, 0.18611834943294525, 0.1876586265861988, 0.18996606767177582, 0.19170701876282692, 0.19398853182792664, 0.19786442816257477, 0.19795633852481842, 0.20195159316062927, 0.2058800607919693, 0.2099103182554245, 0.2122517265379429, 0.21410366892814636, 0.21819619834423065, 0.22221362590789795, 0.22233009338378906, 0.22500130906701088, 0.2251257635653019, 0.22638091444969177, 0.23067741096019745, 0.23368822410702705, 0.2348879873752594, 0.2382080741226673, 0.2390350103378296, 0.2391497790813446, 0.24253453686833382, 0.24265171959996223, 0.2470107562839985, 0.24764248728752136, 0.24777774512767792, 0.2516774423420429, 0.256104726344347, 0.2564055472612381, 0.2607169933617115, 0.265461727976799, 0.26985861361026764, 0.2701106257736683, 0.2702729292213917, 0.274574413895607, 0.2750340588390827, 0.27919672429561615, 0.283704474568367, 0.28386808931827545, 0.28953738883137703, 0.2896753139793873, 0.29320384562015533, 0.29451676085591316, 0.295327290892601, 0.29802779853343964, 0.29818175733089447, 0.29972871020436287, 0.30290623009204865, 0.30305664241313934, 0.30486901476979256, 0.31299956142902374, 0.31518544629216194, 0.31790371239185333, 0.3205283172428608, 0.3230419009923935, 0.32595496252179146, 0.32612212374806404, 0.3282426446676254, 0.3283906430006027, 0.33146094158291817, 0.3316439874470234, 0.33365286886692047, 0.33723779395222664, 0.3390095978975296, 0.3427443392574787, 0.34853987768292427, 0.34869300201535225, 0.35457711294293404, 0.35537679493427277, 0.3604113645851612, 0.36124424636363983, 0.3665340431034565, 0.36667295172810555, 0.3727492541074753, 0.3729033060371876, 0.37888188660144806, 0.37907837703824043, 0.3792510814964771, 0.38557394221425056, 0.38573457673192024, 0.39108292758464813, 0.39911722019314766, 0.40589402988553047, 0.40604450181126595, 0.410498782992363, 0.4106704741716385, 0.4129834659397602, 0.4131447561085224, 0.4172855168581009, 0.4202354736626148, 0.4204071946442127, 0.43538858368992805, 0.4355536885559559, 0.4432900734245777, 0.44603554904460907, 0.4461968094110489, 0.451409537345171, 0.4598204083740711, 0.46002377942204475, 0.46178819239139557, 0.46868549659848213, 0.46995367109775543, 0.4868385046720505, 0.48702501133084297, 0.4958047419786453, 0.4960057884454727, 0.5051481872797012, 0.506847757846117, 0.5148334950208664, 0.5150565356016159, 0.5174009390175343, 0.5249751061201096, 0.5283288545906544, 0.5355450958013535, 0.539984006434679, 0.5467876642942429, 0.5522958822548389, 0.5584012717008591, 0.5706631988286972, 0.5836620181798935, 0.5836880058050156, 0.5942088551819324, 0.5975865572690964, 0.6102624125778675, 0.6124880760908127, 0.6286389082670212, 0.646102175116539, 0.6471664495766163, 0.665437325835228, 0.6687244363129139, 0.687017485499382, 0.6932839937508106, 0.7115348428487778, 0.7218200154602528, 0.7219699807465076, 0.7747527211904526, 0.7749756425619125, 0.8192005604505539, 0.8194110840559006, 0.8830635994672775, 0.9217727445065975, 0.9245667457580566, 0.947742685675621, 0.9674464613199234, 0.9890814647078514, 0.9891453236341476, 0.9925699159502983] +class CUBLAS_Context(object): + _instance = None + + def __init__(self): + raise RuntimeError('Call get_instance() instead') + + def initialize(self): + self.context = {} + #prev_device = torch.cuda.current_device() + #for i in range(torch.cuda.device_count()): + # torch.cuda.set_device(torch.device('cuda', i)) + # self.context.append(ct.c_void_p(lib.get_context())) + #torch.cuda.set_device(prev_device) + + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + + def get_context(self, device): + if device.index not in self.context: + prev_device = torch.cuda.current_device() + torch.cuda.set_device(device) + self.context[device.index] = ct.c_void_p(lib.get_context()) + torch.cuda.set_device(prev_device) + return self.context[device.index] + +class Cusparse_Context(object): + _instance = None + + def __init__(self): + raise RuntimeError('Call get_instance() instead') + + def initialize(self): + self.context = ct.c_void_p(lib.get_cusparse()) + + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance def create_linear_map(signed=True): if signed: @@ -89,6 +131,16 @@ def create_dynamic_map(signed=True, n=7): data.sort() return Tensor(data) +def get_special_format_str(): + major, minor = torch.cuda.get_device_capability() + if major < 7: + print(f'Device with CUDA capability of {major} not supported for 8-bit matmul. Device has no tensor cores!') + assert major >= 7 + + if major == 7: return 'col_turing' + elif major == 8: return 'col_ampere' + else: return 'col_turing' + def get_ptr(A: Tensor) -> ct.c_void_p: ''' Get the ctypes pointer from a PyTorch Tensor. @@ -105,6 +157,105 @@ def get_ptr(A: Tensor) -> ct.c_void_p: if A is None: return None else: return ct.c_void_p(A.data.storage().data_ptr()) +def pre_call(device): + prev_device = torch.cuda.current_device() + torch.cuda.set_device(device) + return prev_device + +def post_call(prev_device): + torch.cuda.set_device(prev_device) + +def get_transform_func(dtype, orderA, orderOut, transpose=False): + name = f'ctransform_{(8 if dtype == torch.int8 else 32)}_{orderA}_to_{orderOut}_{"t" if transpose else "n"}' + if not hasattr(lib, name): + print(name) + raise ValueError(f'Transform function not supported: {orderA} to {orderOut} for data type {dtype} and transpose={transpose}') + else: + return getattr(lib, name) + +class GlobalData(object): + _instance = None + + def __init__(self): + raise RuntimeError('Call get_instance() instead') + + def initialize(self): + self.data = {} + + @classmethod + def get_instance(cls): + if cls._instance is None: + cls._instance = cls.__new__(cls) + cls._instance.initialize() + return cls._instance + + +def get_transform_buffer(shape, dtype, device, to_order, from_order='row', transpose=False): + #init_func = torch.empty + init_func = torch.zeros + dims = len(shape) + + if dims == 2: + rows = shape[0] + elif dims == 3: + rows = shape[0]*shape[1] + cols = shape[-1] + + state = (shape, to_order) + if transpose: + # swap dims + tmp = rows + rows = cols + cols = tmp + state = (shape[::-1], to_order) + + if to_order == 'row' or to_order == 'col': + return init_func(shape, dtype=dtype, device=device), state + elif to_order == 'col32': + # blocks of 32 columns (padded) + cols = 32*((cols+31)//32) + return init_func((rows, cols), dtype=dtype, device=device), state + elif to_order == 'col_turing': + # blocks of 32 columns and 8 rows + cols = 32*((cols+31)//32) + rows = 8*((rows+7)//8) + return init_func((rows, cols), dtype=dtype, device=device), state + elif to_order == 'col_ampere': + # blocks of 32 columns and 32 rows + cols = 32*((cols+31)//32) + rows = 32*((rows+31)//32) + return init_func((rows, cols), dtype=dtype, device=device), state + else: + raise NotImplementedError(f'To_order not supported: {to_order}') + +def nvidia_transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None): + if state is None: state = (A.shape, from_order) + else: from_order = state[1] + if out is None: out, new_state = get_transform_buffer(state[0], A.dtype, A.device, to_order, state[1]) + else: new_state = (state[1], to_order) + func = get_transform_func(A.dtype, from_order, to_order, transpose) + + shape = state[0] + if len(shape) == 2: + dim1 = ct.c_int32(shape[0]) + dim2 = ct.c_int32(shape[1]) + elif ld is not None: + n = math.prod(shape) + dim1 = math.prod([shape[i] for i in ld]) + dim2 = ct.c_int32(n//dim1) + dim1 = ct.c_int32(dim1) + else: + dim1 = ct.c_int32(shape[0]*shape[1]) + dim2 = ct.c_int32(shape[2]) + + ptr = CUBLAS_Context.get_instance().get_context(A.device) + ptrA = get_ptr(A) + ptrOut = get_ptr(out) + func(ptr, get_ptr(A), get_ptr(out), dim1, dim2) + + + return out, new_state + def estimate_quantiles(A: Tensor, out: Tensor=None, offset: float=1/512) -> Tensor: ''' Estimates 256 equidistant quantiles on the input tensor eCDF. @@ -544,3 +695,717 @@ def histogram_scatter_add_2d(histogram: Tensor, index1: Tensor, index2: Tensor, maxdim1 = ct.c_int32(histogram.shape[0]) n = ct.c_int32(index1.numel()) lib.chistogram_scatter_add_2d(get_ptr(histogram), get_ptr(index1), get_ptr(index2), get_ptr(source), maxdim1, n) + +def check_matmul(A, B, out, transposed_A, transposed_B, expected_type=torch.int8): + if not torch.cuda.is_initialized(): torch.cuda.init() + if A.dtype != expected_type or B.dtype != expected_type: + raise TypeError(f'Expected torch.int8 input tensors A and B, but got {A.dtype} and {B.dtype}') + + sA = A.shape + sB = B.shape + tA = transposed_A + tB = transposed_B + + correct = True + + if len(sA) == 2 and len(sB) == 2: + if not tA and not tB and A.shape[1] != B.shape[0]: correct = False + elif tA and not tB and A.shape[0] != B.shape[0]: correct = False + elif tA and tB and A.shape[0] != B.shape[1]: correct = False + elif not tA and tB and A.shape[1] != B.shape[1]: correct = False + elif len(sA) == 3 and len(sB) == 2: + if not tA and not tB and A.shape[2] != B.shape[0]: correct = False + elif tA and not tB and A.shape[1] != B.shape[0]: correct = False + elif tA and tB and A.shape[1] != B.shape[1]: correct = False + elif not tA and tB and A.shape[2] != B.shape[1]: correct = False + elif len(sA) == 3 and len(sB) == 3: + if not tA and not tB and A.shape[2] != B.shape[1]: correct = False + elif tA and not tB and A.shape[1] != B.shape[1]: correct = False + elif tA and tB and A.shape[1] != B.shape[2]: correct = False + elif not tA and tB and A.shape[2] != B.shape[2]: correct = False + + if out is not None: + sout = out.shape + # special case common in backprop + if not correct and len(sA) == 3 and len(sB) == 3: + if (sout[0] == sA[2] and sout[1] == sB[2] and + sA[0] == sB[0] and sA[1] == sB[1]): + correct = True + else: + if len(sA) == 2 and len(sB) == 2: + if not tA and not tB: sout = (sA[0], sB[1]) + elif tA and tB: sout = (sA[1], sB[0]) + elif tA and not tB: sout = (sA[1], sB[1]) + elif not tA and tB: sout = (sA[0], sB[0]) + elif len(sA) == 3 and len(sB) == 2: + if not tA and not tB: sout = (sA[0], sA[1], sB[1]) + elif tA and tB: sout = (sA[0], sA[2], sB[0]) + elif tA and not tB: sout = (sA[0], sA[2], sB[1]) + elif not tA and tB: sout = (sA[0], sA[1], sB[0]) + elif len(sA) == 3 and len(sB) == 3: + if not tA and not tB: sout = (sA[0], sA[1], sB[2]) + elif tA and tB: sout = (sA[0], sA[2], sB[1]) + elif tA and not tB: sout = (sA[0], sA[2], sB[2]) + elif not tA and tB: sout = (sA[0], sA[1], sB[1]) + + + if not correct: + raise ValueError(f'Tensor dimensions incorrect for matrix mulitiplication: A x B: {sA} x {sB} with transpose for A x B: {tA} x {tB}.') + + return sout + +def igemm(A: Tensor, B: Tensor, out: Tensor=None, transposed_A=False, transposed_B=False): + sout = check_matmul(A, B, out, transposed_A, transposed_B) + if out is None: out = torch.zeros(size=sout, dtype=torch.int32, device=A.device) + if len(A.shape) == 3 and len(B.shape) == 3: + if A.shape[0] == B.shape[0] and A.shape[2] == B.shape[1]: + return batched_igemm(A, B, out) + + sA = A.shape + sB = B.shape + if transposed_A and len(sA) == 2: sA = (sA[1], sA[0]) + elif transposed_A and len(sA) == 3: sA = (sA[0], sA[2], sA[0]) + if transposed_B and len(sB) == 2: sB = (sB[1], sB[0]) + elif transposed_B and len(sB) == 3: sB = (sB[0], sB[2], sB[0]) + # this is a mess: cuBLAS expect column major, but PyTorch is row major. + # So to perform the matrix multiplication, we have to treat A, B, and C matrices + # (transpose of row major is column major) + # This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these + + # matrices in the input arguments for cuBLAS + # column major: A @ B = C: [m, k] @ [k, n] = [m, n] + # row major: B^T @ A^T = C^T: [m, k] @ [k, n] = [m, n] + # column major with row major layout: B^T @ A^T = C^T: [k, m] @ [n, k] = [n, m] + if len(sB) == 2: + if B.stride()[0] == B.shape[1]: transposed_B = False + elif B.stride()[1] == B.shape[0]: transposed_B = True + if len(A.shape) == 2: + if A.stride()[0] == A.shape[1]: transposed_A = False + elif A.stride()[1] == A.shape[0]: transposed_A = True + else: + if A.stride()[1] == A.shape[2]: transposed_A = False + elif A.stride()[2] == A.shape[1]: transposed_A = True + + if len(sA) == 2: + n = sA[0] + ldb = A.stride()[1 if transposed_A else 0] + elif len(sA) == 3 and len(sB) == 2: + n = sA[0]*sA[1] + ldb = sA[2] + + + m = sB[1] + k = sB[0] + lda = B.stride()[(1 if transposed_B else 0)] + ldc = sB[1] + elif len(sB) == 3: + # special case + assert len(sA) == 3 + if not (sA[0] == sB[0] and sA[1] == sB[1]): + raise ValueError(f'Only bsi,bso->io supported for tensor contractions, but dims for A x B were: {sA} x {sB}') + + transposed_A = True + transposed_B = False + + m = sB[2] + n = sA[2] + k = sB[0]*sB[1] + + lda = m + ldb = sA[2] + ldc = m + + + ptr = CUBLAS_Context.get_instance().get_context(A.device) + + # B^T @ A^T = C^T + # [km, nk -> mn] + lib.cigemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k), + get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc)) + return out + + +def batched_igemm(A: Tensor, B: Tensor, out: Tensor=None, transposed_A=False, transposed_B=False): + if not len(A.shape) == 3 or not len(B.shape) == 3: + raise ValueError(f'Expected 3-dimensional tensors for bmm, but got shapes A and B: {A.shape} and {B.shape}') + sout = check_matmul(A, B, out, transposed_A, transposed_B) + if out is None: out = torch.zeros(size=sout, dtype=torch.int32, device=A.device) + + if B.is_contiguous(): + lda = B.stride()[1] + transposed_A = False + else: + s = B.stride() + if s[0] != B.shape[0]: + B = B.contiguous() + lda = B.stride()[1] + elif s[2] == B.shape[1]: + transposed_A = True + lda = B.stride()[2] + else: + if s[2] == 1: + B = B.contiguous() + lda = B.stride()[1] + elif s[1] == 1: + B = B.contiguous() + lda = B.stride()[1] + else: + B = B.contiguous() + lda = B.stride()[1] + + if A.is_contiguous(): + ldb = A.stride()[1] + transposed_B = False + else: + s = A.stride() + if s[0] != A.shape[0]: + A = A.contiguous() + ldb = A.stride()[1] + transposed_B = False + elif s[2] == A.shape[1]: + ldb = A.stride()[2] + transposed_B = True + else: + A = A.contiguous() + ldb = A.stride()[1] + transposed_B = False + + # this is a mess: cuBLAS expect column major, but PyTorch is row major. + # So to perform the matrix multiplication, we have to treat A, B, and C matrices + # (transpose of row major is column major) + # This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these + # matrices in the input arguments for cuBLAS + + # column major: A @ B = C: [batch, m, k] @ [batch, k, n] = [batch, m, n] + # row major: B^T @ A^T = C^T: [batch, m, k] @ [batch, k, n] = [batch, m, n] + # column major with row major layout: B^T @ A^T = C^T: [batch, k, m] @ [batch, n, k] = [batch, n, m] + num_batch = A.shape[0] + n = A.shape[1] + m = B.shape[2] + k = B.shape[1] + + ldc = m + + strideA = B.shape[1]*B.shape[2] + strideB = A.shape[1]*A.shape[2] + strideC = A.shape[1]*B.shape[2] + + ptr = CUBLAS_Context.get_instance().get_context(A.device) + + lib.cbatched_igemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k), + get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc), + ct.c_long(strideA), ct.c_long(strideB), ct.c_long(strideC), ct.c_uint32(num_batch)) + return out + +def igemmlt(A, B, SA, SB, out=None, Sout=None, row_scale=None, dtype=torch.int32): + shapeA = SA[0] + shapeB = SB[0] + dimsA = len(shapeA) + dimsB = len(shapeB) + if dimsA == 2: + m = shapeA[0] + elif dimsA == 3: + m = shapeA[0]*shapeA[1] + + if dimsB == 2: + rows = n = shapeB[0] + elif dimsB == 3: + rows = n = shapeB[0]*shapeB[1] + + if dimsA == 2 and out is None: + out, Sout = get_transform_buffer((shapeA[0], shapeB[0]), dtype, A.device, 'col32', 'row') + elif dimsA == 3 and out is None: + out, Sout = get_transform_buffer((shapeA[0], shapeA[1], shapeB[0]), dtype, A.device, 'col32', 'row') + + if row_scale is not None: assert row_scale.numel() == out.shape[0] + assert dimsB != 3, 'len(B.shape)==3 not supported' + assert A.device.type == 'cuda' + assert B.device.type == 'cuda' + assert A.dtype == torch.int8 + assert B.dtype == torch.int8 + assert out.dtype == dtype + assert SA[1] == 'col32' + assert SB[1] in ['col_turing', 'col_ampere'] + assert Sout[1] == 'col32' + assert shapeA[-1] == shapeB[-1], f'Matmullt only supports A @ B^T. Inner matrix dimensions do not match: A @ B = {shapeA} @ {shapeB}' + formatB = SB[1] + prev_device = A.device + torch.cuda.set_device(A.device) + + ptr = CUBLAS_Context.get_instance().get_context(A.device) + ptrA = get_ptr(A) + ptrB = get_ptr(B) + ptrC = get_ptr(out) + ptrRowScale = get_ptr(row_scale) + + k = shapeA[-1] + lda = ct.c_int32(m*32) + if formatB == 'col_turing': + # turing: tiles with rows filled up to multiple of 8 rows by 32 columns + # n = rows + ldb = ct.c_int32(((rows+7)//8)*8*32) + else: + # ampere: tiles with rows filled up to multiple of 32 rows by 32 columns + # n = rows + ldb = ct.c_int32(((rows+31)//32)*32*32) + + ldc = ct.c_int32(m*32) + m = ct.c_int32(m) + n = ct.c_int32(n) + k = ct.c_int32(k) + + has_error = 0 + if formatB == 'col_turing': + if dtype == torch.int32: + has_error = lib.cigemmlt_turing_32(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc) + elif row_scale is None: + has_error = lib.cigemmlt_turing_8(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc) + else: + has_error = lib.cigemmlt_turing_8_rowscale(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc) + elif formatB == 'col_ampere': + if dtype == torch.int32: + has_error = lib.cigemmlt_ampere_32(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc) + elif row_scale is None: + has_error = lib.cigemmlt_ampere_8(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc) + else: + has_error = lib.cigemmlt_ampere_8_rowscale(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc) + + if has_error == 1: + raise Exception('cublasLt ran into an error!') + + torch.cuda.set_device(prev_device) + + + return out, Sout + + +def mm_dequant(A, quant_state, row_stats, col_stats, out=None, new_row_stats=None, new_col_stats=None): + assert A.dtype == torch.int32 + out_shape = quant_state[0] + if len(out_shape) == 3: out_shape = (out_shape[0]*out_shape[1], out_shape[2]) + + if out is None: out = torch.empty(out_shape, dtype=torch.float16, device=A.device) + if new_row_stats is None: new_row_stats = torch.empty(out_shape[0], dtype=torch.float32, device=A.device) + if new_col_stats is None: new_col_stats = torch.empty(out_shape[1], dtype=torch.float32, device=A.device) + assert new_row_stats.shape[0] == row_stats.shape[0], f"{new_row_stats.shape} vs {row_stats.shape}" + assert new_col_stats.shape[0] == col_stats.shape[0], f"{new_col_stats.shape} vs {col_stats.shape}" + + ptrA = get_ptr(A) + ptrOut = get_ptr(out) + ptrRowStats = get_ptr(row_stats) + ptrColStats = get_ptr(col_stats) + ptrNewRowStats = get_ptr(new_row_stats) + ptrNewColStats = get_ptr(new_col_stats) + numRows = ct.c_int32(out_shape[0]) + numCols = ct.c_int32(out_shape[1]) + + lib.cdequant_mm_int32_fp16(ptrA, ptrRowStats, ptrColStats, ptrOut, ptrNewRowStats, ptrNewColStats, numRows, numCols) + + return out + + +def get_colrow_absmax(A, row_stats=None, col_stats=None, nnz_block_ptr=None, threshold=0.0): + assert A.dtype == torch.float16 + device = A.device + + cols = A.shape[-1] + if len(A.shape) == 3: + rows = A.shape[0]*A.shape[1] + else: + rows = A.shape[0] + + col_tiles = (cols+255)//256 + tiled_rows = ((rows+15)//16)*16 + if row_stats is None: row_stats = torch.empty((rows,), dtype=torch.float32, device=device).fill_(-50000.0) + if col_stats is None: col_stats = torch.empty((cols,), dtype=torch.float32, device=device).fill_(-50000.0) + + if nnz_block_ptr is None and threshold > 0.0: nnz_block_ptr = torch.zeros(((tiled_rows*col_tiles)+1,), dtype=torch.int32, device=device) + + ptrA = get_ptr(A) + ptrRowStats = get_ptr(row_stats) + ptrColStats = get_ptr(col_stats) + ptrNnzrows = get_ptr(nnz_block_ptr) + rows = ct.c_int32(rows) + cols = ct.c_int32(cols) + + prev_device = pre_call(A.device) + lib.cget_col_row_stats(ptrA, ptrRowStats, ptrColStats, ptrNnzrows, ct.c_float(threshold), rows, cols) + post_call(prev_device) + + + if threshold > 0.0: + nnz_block_ptr.cumsum_(0) + + + return row_stats, col_stats, nnz_block_ptr + +class COOSparseTensor(object): + def __init__(self, rows, cols, nnz, rowidx, colidx, values): + assert rowidx.dtype == torch.int32 + assert colidx.dtype == torch.int32 + assert values.dtype == torch.float16 + assert values.numel() == nnz + assert rowidx.numel() == nnz + assert colidx.numel() == nnz + + self.rows = rows + self.cols = cols + self.nnz = nnz + self.rowidx = rowidx + self.colidx = colidx + self.values = values + +class CSRSparseTensor(object): + def __init__(self, rows, cols, nnz, rowptr, colidx, values): + assert rowptr.dtype == torch.int32 + assert colidx.dtype == torch.int32 + assert values.dtype == torch.float16 + assert values.numel() == nnz + assert colidx.numel() == nnz + assert rowptr.numel() == rows+1 + + self.rows = rows + self.cols = cols + self.nnz = nnz + self.rowptr = rowptr + self.colidx = colidx + self.values = values + +class CSCSparseTensor(object): + def __init__(self, rows, cols, nnz, colptr, rowidx, values): + assert colptr.dtype == torch.int32 + assert rowidx.dtype == torch.int32 + assert values.dtype == torch.float16 + assert values.numel() == nnz + assert rowidx.numel() == nnz + assert colptr.numel() == cols+1 + + self.rows = rows + self.cols = cols + self.nnz = nnz + self.colptr = colptr + self.rowidx = rowidx + self.values = values + +def coo2csr(cooA): + values, counts = torch.unique(cooA.rowidx, return_counts=True) + values.add_(1) + rowptr = torch.zeros((cooA.rows+1, ), dtype=torch.int32, device=cooA.rowidx.device) + rowptr.scatter_(index=values.long(), src=counts.int(), dim=0) + rowptr.cumsum_(0) + return CSRSparseTensor(cooA.rows, cooA.cols, cooA.nnz, rowptr, cooA.colidx, cooA.values) + +def coo2csc(cooA): + val, col2rowidx = torch.sort(cooA.colidx) + rowidx = cooA.rowidx[col2rowidx] + values = cooA.values[col2rowidx] + colvalues, counts = torch.unique(val, return_counts=True) + colvalues.add_(1) + colptr = torch.zeros((cooA.cols+1, ), dtype=torch.int32, device=cooA.colidx.device) + colptr.scatter_(index=colvalues.long(), src=counts.int(), dim=0) + colptr.cumsum_(0) + return CSCSparseTensor(cooA.rows, cooA.cols, cooA.nnz, colptr, rowidx, values) + +def coo_zeros(rows, cols, nnz, device, dtype=torch.half): + rowidx = torch.zeros((nnz,), dtype=torch.int32, device=device) + colidx = torch.zeros((nnz,), dtype=torch.int32, device=device) + values = torch.zeros((nnz,), dtype=dtype, device=device) + return COOSparseTensor(rows, cols, nnz, rowidx, colidx, values) + + +def double_quant(A, col_stats=None, row_stats=None, out_col=None, out_row=None, threshold=0.0): + device = A.device + assert A.dtype == torch.half + assert device.type == 'cuda' + prev_device = pre_call(A.device) + + cols = A.shape[-1] + if len(A.shape) == 3: + rows = A.shape[0]*A.shape[1] + else: + rows = A.shape[0] + + if row_stats is None or col_stats is None: + row_stats, col_stats, nnz_row_ptr = get_colrow_absmax(A, threshold=threshold) + + if out_col is None: out_col = torch.zeros(A.shape, device=device, dtype=torch.int8) + if out_row is None: out_row = torch.zeros(A.shape, device=device, dtype=torch.int8) + + coo_tensor = None + ptrA = get_ptr(A) + ptrColStats = get_ptr(col_stats) + ptrRowStats = get_ptr(row_stats) + ptrOutCol = get_ptr(out_col) + ptrOutRow = get_ptr(out_row) + + if threshold > 0.0: + nnz = nnz_row_ptr[-1].item() + if nnz > 0: + coo_tensor = coo_zeros(A.shape[0], A.shape[1], nnz_row_ptr[-1].item(), device) + ptrRowIdx = get_ptr(coo_tensor.rowidx) + ptrColIdx = get_ptr(coo_tensor.colidx) + ptrVal = get_ptr(coo_tensor.values) + ptrRowPtr = get_ptr(nnz_row_ptr) + + lib.cdouble_rowcol_quant(ptrA, ptrRowStats, ptrColStats, ptrOutCol, ptrOutRow, ptrRowIdx, ptrColIdx, ptrVal, ptrRowPtr, ct.c_float(threshold), ct.c_int32(rows), ct.c_int32(cols)) + val, idx = torch.sort(coo_tensor.rowidx) + coo_tensor.rowidx = val + coo_tensor.colidx = coo_tensor.colidx[idx] + coo_tensor.values = coo_tensor.values[idx] + else: + lib.cdouble_rowcol_quant(ptrA, ptrRowStats, ptrColStats, ptrOutCol, ptrOutRow, None, None, None, None, ct.c_float(0.0), ct.c_int32(rows), ct.c_int32(cols)) + else: + lib.cdouble_rowcol_quant(ptrA, ptrRowStats, ptrColStats, ptrOutCol, ptrOutRow, None, None, None, None, ct.c_float(threshold), ct.c_int32(rows), ct.c_int32(cols)) + post_call(prev_device) + + return out_row, out_col, row_stats, col_stats, coo_tensor + + +def get_special_format_str(): + major, minor = torch.cuda.get_device_capability() + if major < 7: + print(f'Device with CUDA capability of {major} not supported for 8-bit matmul. Device has no tensor cores!') + assert major >= 7 + + if major == 7: return 'col_turing' + elif major == 8: return 'col_ampere' + else: return 'col_turing' + + + + +def transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None): + if state is None: state = (A.shape, from_order) + else: from_order = state[1] + if out is None: out, new_state = get_transform_buffer(state[0], A.dtype, A.device, to_order, state[1], transpose) + else: new_state = (state[0], to_order) # (shape, order) + + shape = state[0] + if len(shape) == 2: + dim1 = ct.c_int32(shape[0]) + dim2 = ct.c_int32(shape[1]) + else: + dim1 = ct.c_int32(shape[0]*shape[1]) + dim2 = ct.c_int32(shape[2]) + + ptrA = get_ptr(A) + ptrOut = get_ptr(out) + if to_order == 'col32': + if transpose: + lib.ctransform_row2col32T(get_ptr(A), get_ptr(out), dim1, dim2) + else: + lib.ctransform_row2col32(get_ptr(A), get_ptr(out), dim1, dim2) + elif to_order == 'col_turing': + if transpose: + lib.ctransform_row2turingT(get_ptr(A), get_ptr(out), dim1, dim2) + else: + lib.ctransform_row2turing(get_ptr(A), get_ptr(out), dim1, dim2) + elif to_order == 'col_ampere': + if transpose: + lib.ctransform_row2ampereT(get_ptr(A), get_ptr(out), dim1, dim2) + else: + lib.ctransform_row2ampere(get_ptr(A), get_ptr(out), dim1, dim2) + elif to_order == 'row': + if from_order == 'col_turing': + lib.ctransform_turing2row(get_ptr(A), get_ptr(out), dim1, dim2) + elif from_order == 'col_ampere': + lib.ctransform_ampere2row(get_ptr(A), get_ptr(out), dim1, dim2) + else: + raise NotImplementedError(f'Transform function not implemented: From {from_order} to {to_order}') + + + + + return out, new_state + +def spmm_coo(cooA, B, out=None): + if out is None: out = torch.empty((cooA.rows, B.shape[1]), device=B.device, dtype=B.dtype) + nnz = cooA.nnz + assert cooA.rowidx.numel() == nnz + assert cooA.colidx.numel() == nnz + assert cooA.values.numel() == nnz + assert cooA.cols == B.shape[0] + + transposed_B = (False if B.is_contiguous() else True) + + ldb = B.stride()[(1 if transposed_B else 0)] + ldc = B.shape[1] + + ptr = Cusparse_Context.get_instance().context + + ptrRowidx = get_ptr(cooA.rowidx) + ptrColidx = get_ptr(cooA.colidx) + ptrValues = get_ptr(cooA.values) + ptrB = get_ptr(B) + ptrC = get_ptr(out) + cnnz = ct.c_int32(cooA.nnz) + crowsA = ct.c_int32(cooA.rows) + ccolsA = ct.c_int32(cooA.cols) + ccolsB = ct.c_int32(B.shape[1]) + cldb = ct.c_int32(ldb) + cldc = ct.c_int32(ldc) + + lib.cspmm_coo(ptr, ptrRowidx, ptrColidx, ptrValues, cnnz, crowsA, ccolsA, ccolsB, cldb, ptrB, cldc, ptrC, ct.c_bool(transposed_B)) + + return out + +def spmm_coo_very_sparse(cooA, B, dequant_stats=None, out=None): + if out is None: out = torch.zeros((cooA.rows, B.shape[1]), device=B.device, dtype=cooA.values.dtype) + nnz = cooA.nnz + assert cooA.rowidx.numel() == nnz + assert cooA.colidx.numel() == nnz + assert cooA.values.numel() == nnz + assert cooA.cols == B.shape[0], f'{cooA.cols} vs {B.shape}' + + transposed_B = (False if B.is_contiguous() else True) + + ldb = B.stride()[(1 if transposed_B else 0)] + ldc = B.shape[1] + + values, counts = torch.unique(cooA.rowidx, return_counts=True) + offset = counts.cumsum(0).int() + max_count, max_idx = torch.sort(counts, descending=True) + max_idx = max_idx.int() + max_count = max_count.int() + assert max_count[0] <= 32, f'Current max count per row is 8 but found {max_count[0]}.' + assert B.dtype in [torch.float16, torch.int8] + ptrOffset = get_ptr(offset) + ptrMaxCount = get_ptr(max_count) + ptrMaxIdx = get_ptr(max_idx) + + ptrRowidx = get_ptr(cooA.rowidx) + ptrColidx = get_ptr(cooA.colidx) + ptrValues = get_ptr(cooA.values) + ptrB = get_ptr(B) + ptrC = get_ptr(out) + ptrDequantStats = get_ptr(dequant_stats) + cnnz_rows = ct.c_int32(counts.numel()) + cnnz = ct.c_int32(cooA.nnz) + crowsA = ct.c_int32(cooA.rows) + ccolsA = ct.c_int32(cooA.cols) + crowsB = ct.c_int32(B.shape[1]) + ccolsB = ct.c_int32(B.shape[1]) + cldb = ct.c_int32(ldb) + cldc = ct.c_int32(ldc) + #print(cooA.rowidx[:64]) + #print(cooA.colidx[:64].sort()[0]) + + if B.dtype == torch.float16: + lib.cspmm_coo_very_sparse_naive_fp16(ptrMaxCount, ptrMaxIdx, ptrOffset, ptrRowidx, ptrColidx, ptrValues, ptrB, ptrC, ptrDequantStats, cnnz_rows, cnnz, crowsA, crowsB, ccolsB) + elif B.dtype == torch.int8: + lib.cspmm_coo_very_sparse_naive_int8(ptrMaxCount, ptrMaxIdx, ptrOffset, ptrRowidx, ptrColidx, ptrValues, ptrB, ptrC, ptrDequantStats, cnnz_rows, cnnz, crowsA, crowsB, ccolsB) + #else: assertion error + + return out + + +C = 127.0 + +def vectorwise_quant(x, dim=1, quant_type='vector'): + if quant_type == 'linear': + max1 = torch.abs(x).max().float() + xq = torch.round(x/max1*127).to(torch.int8) + return xq, max1 + elif quant_type in ['vector', 'row']: + max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True) + xq = torch.round(x*(C/max1)).to(torch.int8) + return xq, max1 + elif quant_type == 'zeropoint': + dtype = x.dtype + x = x.float() + dyna = x.max() - x.min() + if dyna == 0: dyna = 1 + qx = 255./dyna + minx = x.min() + zpx = torch.round(minx* qx) + x = torch.round(qx*x - zpx) + zpx + return x, qx + elif quant_type in ['vector-zeropoint', 'row-zeropoint']: + dtype = x.dtype + x = x.float() + dyna = (torch.amax(x, dim=dim, keepdim=True) - torch.amin(x, dim=dim, keepdim=True)) + dyna[dyna==0] = 1 + qx = 255./dyna + minx = torch.amin(x, dim=dim, keepdim=True) + zpx = torch.round(minx* qx) + x = torch.round(qx*x - zpx) + zpx + return x, qx + elif quant_type == 'truncated-vector': + with torch.no_grad(): + absx = torch.abs(x) + max1 = torch.amax(absx, dim=dim, keepdim=True) + max1 = max1*0.7 + idx = (absx > max1.expand_as(absx)) + sign = torch.sign(x[idx]) + x[idx] = max1.expand_as(absx)[idx]*sign + xq = torch.round(x/max1*C).to(torch.int8) + return xq, max1 + else: return None + +def vectorwise_dequant(xq, max1, quant_type='vector'): + if quant_type == 'vector': + x = (xq/C*max1).to(torch.float32) + return x + else: return None + +def vectorwise_mm_dequant(xq, S1, S2, dtype=torch.half, quant_type='vector'): + if quant_type == 'linear': + norm = S1*S2/(C*C) + # double cast needed to prevent overflows + return (xq.float()*norm).to(dtype) + elif quant_type == 'zeropoint': + norm = 1.0/(S1*S2) + return (xq.float()*norm).to(dtype) + elif quant_type == 'row-zeropoint': + norm = 1.0/(S1*S2) + x = xq.float() + if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0) + if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0) + if len(S1.shape) == 2: + x *= norm + else: + x *= norm + return x.to(dtype) + elif quant_type == 'vector-zeropoint': + x = xq.float() + if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0) + if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0) + if len(S1.shape) == 2: + x *= 1.0/S1 + else: + x *= 1.0/S1 + x *= 1.0/S2.t() + return x.to(dtype) + elif quant_type == 'row': + x = xq.float() + if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0) + if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0) + if len(S1.shape) == 2: + x *= S1*S2/(C*C) + else: + x *= S1*S2/(C*C) + return x.to(dtype) + elif quant_type in ['truncated-vector', 'vector']: + x = xq.float() + if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0) + if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0) + if len(S1.shape) == 2: + x *= S1/C + else: + x *= S1/C + x *= S2/C + return x.to(dtype) + else: return None + + +def dequant_min_max(xq, A, B, SA, SB, dtype=torch.half): + offset = B.float().t().sum(0)*(SA[0]+SA[1]) + x = xq.float() + if len(xq.shape) == 2 and len(SB.shape) == 3: SB = SB.squeeze(0) + if len(SB.shape) == 2: + x *= SB.t()/127 + else: + x *= SB/127 + x *= SA[1]/127 + x +=offset + return x.to(dtype) diff --git a/bitsandbytes/nn/__init__.py b/bitsandbytes/nn/__init__.py index 27ad6ca..03b4655 100644 --- a/bitsandbytes/nn/__init__.py +++ b/bitsandbytes/nn/__init__.py @@ -2,4 +2,4 @@ # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. -from .modules import StableEmbedding, Embedding +from .modules import StableEmbedding, Linear8bit, Linear8bitLt, Int8Params diff --git a/bitsandbytes/nn/modules.py b/bitsandbytes/nn/modules.py index c5460fb..5013d0b 100644 --- a/bitsandbytes/nn/modules.py +++ b/bitsandbytes/nn/modules.py @@ -3,14 +3,19 @@ # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch +import bitsandbytes as bnb -from typing import Optional +from typing import Union, Tuple, Any, Callable, Iterator, Set, Optional, overload, TypeVar, Mapping, Dict -from torch import Tensor +from torch import Tensor, device, dtype +from torch import nn +from torch.nn.parameter import Parameter import torch.nn.functional as F from bitsandbytes.optim import GlobalOptimManager +T = TypeVar('T', bound='torch.nn.Module') + class StableEmbedding(torch.nn.Embedding): def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False, @@ -70,3 +75,118 @@ class Embedding(torch.nn.Embedding): self.norm_type, self.scale_grad_by_freq, self.sparse) return emb + +class Int8Params(torch.nn.Parameter): + def __new__(cls, data=None, requires_grad=True, has_fp16_weights=False, CB=None, SCB=None): + cls.has_fp16_weights = has_fp16_weights + cls.CB = None + cls.SCB = None + if data is None: + data = torch.empty(0) + return torch.Tensor._make_subclass(cls, data, requires_grad) + + def cuda(self, device): + if self.has_fp16_weights: + return super().cuda(device) + else: + # we store the 8-bit rows-major weight + # we convert this weight to the turning/ampere weight during the first inference pass + B = self.data.contiguous().half().cuda(device) + CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B) + del CBt + del SCBt + self.data = CB + setattr(self, 'CB', CB) + setattr(self, 'SCB', SCB) + + return self + + @overload + def to(self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ..., + non_blocking: bool = ...) -> T: + ... + + @overload + def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T: + ... + + @overload + def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T: + ... + + def to(self, *args, **kwargs): + device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs) + + if device is not None and device.type == 'cuda' and self.data.device.type == 'cpu': return self.cuda(device) + else: + new_param = Int8Params(super().to(device=device, dtype=dtype, non_blocking=non_blocking), requires_grad=self.requires_grad, has_fp16_weights=self.has_fp16_weights) + new_param.CB = self.CB + new_param.SCB = self.SCB + + return new_param + + + +class Linear8bitLt(nn.Linear): + def __init__(self, input_features, output_features, bias=True, has_fp16_weights=True, threshold=0.0, index=None): + super(Linear8bitLt, self).__init__(input_features, output_features, bias) + self.state = bnb.MatmulLtState() + self.index=index + + self.state.threshold = threshold + self.state.has_fp16_weights = has_fp16_weights + if threshold > 0.0 and not has_fp16_weights: + self.state.use_pool = True + + self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights) + + def init_8bit_state(self): + self.state.CB = self.weight.CB + self.state.SCB = self.weight.SCB + self.weight.CB = None + self.weight.SCB = None + + def forward(self, x): + self.state.is_training = self.training + + if self.weight.CB is not None: self.init_8bit_state() + #assert not self.state.has_fp16_weights + #if not self.state.has_fp16_weights: assert self.state.CB is not None or self.state.CxB is not None + + out = bnb.matmul(x, self.weight, state=self.state) + + if self.bias is not None: + out += self.bias.unsqueeze(0).expand_as(out) + + if not self.state.has_fp16_weights and self.state.CB is not None: + # we converted 8-bit row major to turing/ampere format in the first inference pass + # we no longer need the row-major weight + del self.state.CB + self.weight.data = self.state.CxB + + return out + +class Linear8bit(nn.Linear): + def __init__(self, input_features, output_features, bias=True, quant_type='vector', index=None, args=None, sparse_decomp=False): + super(Linear8bit, self).__init__(input_features, output_features, bias) + self.quant_type = quant_type + self.index = index + self.args = args + self.iter = 0 + + def forward(self, x): + self.iter += 1 + if self.iter % self.args.clip_freq == 0: + with torch.no_grad(): + maxval, maxidx = torch.topk(torch.abs(self.weight.flatten()), k=self.args.clip_idx) + if not dist.is_initialized() or dist.get_rank() == 0: + print('clip', maxval[-1].item()) + self.weight.clip_(-maxval[-1], maxval[-1]) + + + if self.args is not None: + out = bnb.nn.functional.sparse_decomposed_linear8bit(x, self.weight, self.bias, qval=self.args.sparse_decomp_val, quant_type=self.args.quant_type) + else: + out = bnb.nn.functional.linear8bit(x, self.weight, self.bias, quant_type=self.args.quant_type) + + return out |