summaryrefslogtreecommitdiff
path: root/csrc
diff options
context:
space:
mode:
Diffstat (limited to 'csrc')
-rw-r--r--csrc/common.cpp39
-rw-r--r--csrc/common.h23
-rw-r--r--csrc/cpu_ops.cpp57
-rw-r--r--csrc/cpu_ops.h9
-rw-r--r--csrc/ops.cu451
-rw-r--r--csrc/ops.cuh10
-rw-r--r--csrc/pythonInterface.c118
7 files changed, 377 insertions, 330 deletions
diff --git a/csrc/common.cpp b/csrc/common.cpp
new file mode 100644
index 0000000..972602b
--- /dev/null
+++ b/csrc/common.cpp
@@ -0,0 +1,39 @@
+#include <common.h>
+#include <float.h>
+
+void *quantize_block(void *arguments) {
+ // 1. find absmax in block
+ // 2. divide input value by absmax to normalize into [-1.0, 1.0]
+ // 3. do binary search to find the closest value
+ // 4. check minimal distance
+ // 5. store index
+
+ struct quantize_block_args *args = (quantize_block_args *) arguments;
+
+ // 1. find absmax in block
+ float absmax_block = -FLT_MAX;
+ for (int i = args->block_idx; i < args->block_end; i++)
+ absmax_block = fmax(absmax_block, fabs(args->A[i]));
+
+ args->absmax[args->block_idx / BLOCK_SIZE] = absmax_block;
+
+ for (int i = args->block_idx; i < args->block_end; i++) {
+ // 2. divide input value by absmax to normalize into [-1.0, 1.0]
+ // 3. do binary search to find the closest value
+ float normed_value = args->A[i] / absmax_block;
+ int idx = args->bin_searcher->scalar(normed_value);
+
+ // 4. check minimal distance
+ // The binary search returns always the value to the left, which might not be the closest value
+ if (idx < 255) {
+ float dist_left = fabs(normed_value - (args->code[idx]));
+ float dist_right = fabs(normed_value - (args->code[idx + 1]));
+ if (dist_right < dist_left) { idx += 1; }
+ }
+
+ // 5. store index
+ args->out[i] = (unsigned char) idx;
+ }
+
+ return NULL;
+}
diff --git a/csrc/common.h b/csrc/common.h
new file mode 100644
index 0000000..35f2463
--- /dev/null
+++ b/csrc/common.h
@@ -0,0 +1,23 @@
+#include <BinSearch.h>
+
+#ifndef common
+#define common
+
+using namespace BinSearch;
+
+struct quantize_block_args {
+ BinAlgo<Scalar, float, Direct2> *bin_searcher;
+ float *code;
+ float *A;
+ float *absmax;
+ unsigned char *out;
+ int block_end;
+ int block_idx;
+ int threadidx;
+};
+
+#define BLOCK_SIZE 4096
+
+void *quantize_block(void *arguments);
+
+#endif \ No newline at end of file
diff --git a/csrc/cpu_ops.cpp b/csrc/cpu_ops.cpp
new file mode 100644
index 0000000..11a2615
--- /dev/null
+++ b/csrc/cpu_ops.cpp
@@ -0,0 +1,57 @@
+#include <BinSearch.h>
+#include <pthread.h>
+#include <common.h>
+
+using namespace BinSearch;
+
+void dequantize_cpu(float *code, unsigned char *A, float *absmax, float *out, int n) {
+ for (int block_idx = 0; block_idx < n; block_idx += BLOCK_SIZE) {
+ int valid_items = n - block_idx >= BLOCK_SIZE ? BLOCK_SIZE : n - block_idx;
+ int block_end = block_idx + valid_items;
+ for (int i = block_idx; i < block_end; i++)
+ out[i] = code[A[i]] * absmax[block_idx / BLOCK_SIZE];
+ }
+}
+
+void quantize_cpu(float *code, float *A, float *absmax, unsigned char *out, int n) {
+
+ // the default code is has range [-0.993, 1.0] which can cause an error in the binary search algorithm used below
+ code[0] = -1.0f;
+
+ int num_blocks = n / BLOCK_SIZE;
+ num_blocks += n % BLOCK_SIZE == 0 ? 0 : 1;
+
+ pthread_t *threads = (pthread_t *) malloc(sizeof(pthread_t) * num_blocks);
+ struct quantize_block_args **args = (quantize_block_args **) malloc(num_blocks * sizeof(quantize_block_args *));
+
+ for (int i = 0; i < num_blocks; i++)
+ args[i] = (quantize_block_args *) malloc(sizeof(quantize_block_args));
+
+ const uint32 elements_code = 256;
+ BinAlgo<Scalar, float, Direct2> bin_searcher(code, elements_code);
+
+ for (int block_idx = 0; block_idx < n; block_idx += BLOCK_SIZE) {
+ int valid_items = n - block_idx >= BLOCK_SIZE ? BLOCK_SIZE : n - block_idx;
+ int block_end = block_idx + valid_items;
+
+ struct quantize_block_args *arg = args[block_idx / BLOCK_SIZE];
+ arg->bin_searcher = &bin_searcher;
+ arg->code = code;
+ arg->A = A;
+ arg->absmax = absmax;
+ arg->out = out;
+ arg->block_end = block_end;
+ arg->block_idx = block_idx;
+ arg->threadidx = block_idx / BLOCK_SIZE;
+
+ pthread_create(&threads[block_idx / BLOCK_SIZE], NULL, &quantize_block, (void *) arg);
+ }
+
+ for (int i = 0; i < num_blocks; i++)
+ int err = pthread_join(threads[i], NULL);
+
+ free(threads);
+ for (int i = 0; i < num_blocks; i++)
+ free(args[i]);
+ free(args);
+} \ No newline at end of file
diff --git a/csrc/cpu_ops.h b/csrc/cpu_ops.h
new file mode 100644
index 0000000..57145a9
--- /dev/null
+++ b/csrc/cpu_ops.h
@@ -0,0 +1,9 @@
+#ifndef BITSANDBYTES_CPU_OPS_H
+#define BITSANDBYTES_CPU_OPS_H
+
+
+void quantize_cpu(float *code, float *A, float *absmax, unsigned char *out, int n);
+
+void dequantize_cpu(float *code, unsigned char *A, float *absmax, float *out, int n);
+
+#endif
diff --git a/csrc/ops.cu b/csrc/ops.cu
index 9691241..464ea2e 100644
--- a/csrc/ops.cu
+++ b/csrc/ops.cu
@@ -8,251 +8,141 @@
#include <cub/device/device_scan.cuh>
#include <limits>
#include <BinSearch.h>
+#include <common.h>
using namespace BinSearch;
using std::cout;
using std::endl;
-#define BLOCK_SIZE 4096
-
-struct quantize_block_args
-{
- BinAlgo<Scalar, float, Direct2> *bin_searcher;
- float *code;
- float *A;
- float *absmax;
- unsigned char *out;
- int block_end;
- int block_idx;
- int threadidx;
-};
-
-void *quantize_block(void *arguments)
-{
- // 1. find absmax in block
- // 2. divide input value by absmax to normalize into [-1.0, 1.0]
- // 3. do binary search to find the closest value
- // 4. check minimal distance
- // 5. store index
-
- struct quantize_block_args *args = (quantize_block_args*)arguments;
-
- // 1. find absmax in block
- float absmax_block = -FLT_MAX;
- for (int i = args->block_idx; i < args->block_end; i++)
- absmax_block = fmax(absmax_block, fabs(args->A[i]));
-
- args->absmax[args->block_idx/BLOCK_SIZE] = absmax_block;
-
- for (int i = args->block_idx; i < args->block_end; i++)
- {
- // 2. divide input value by absmax to normalize into [-1.0, 1.0]
- // 3. do binary search to find the closest value
- float normed_value = args->A[i]/absmax_block;
- int idx = args->bin_searcher->scalar(normed_value);
-
- // 4. check minimal distance
- // The binary search returns always the value to the left, which might not be the closest value
- if(idx < 255)
- {
- float dist_left = fabs(normed_value-(args->code[idx]));
- float dist_right = fabs(normed_value-(args->code[idx+1]));
- if(dist_right < dist_left){ idx+=1; }
- }
-
- // 5. store index
- args->out[i] = (unsigned char)idx;
- }
-
- return NULL;
+void histogramScatterAdd2D(float *histogram, int *index1, int *index2, float *src, int maxidx1, int n) {
+ int threads = 512;
+ int blocks = n / threads;
+ blocks = n % threads == 0 ? blocks : blocks + 1;
+ kHistogramScatterAdd2D<<<blocks, 512>>>(histogram, index1, index2, src, maxidx1, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
-void quantize_cpu(float *code, float *A, float *absmax, unsigned char *out, int n)
-{
-
- // the default code is has range [-0.993, 1.0] which can cause an error in the binary search algorithm used below
- code[0] = -1.0f;
-
- int num_blocks = n/BLOCK_SIZE;
- num_blocks += n % BLOCK_SIZE == 0 ? 0 : 1;
-
- pthread_t *threads = (pthread_t*)malloc(sizeof(pthread_t)*num_blocks);
- struct quantize_block_args **args = (quantize_block_args**)malloc(num_blocks*sizeof(quantize_block_args*));
-
- for(int i = 0; i < num_blocks; i++)
- args[i] = (quantize_block_args*)malloc(sizeof(quantize_block_args));
-
- const uint32 elements_code = 256;
- BinAlgo<Scalar, float, Direct2> bin_searcher(code, elements_code);
-
- for(int block_idx = 0; block_idx < n; block_idx+=BLOCK_SIZE)
- {
- int valid_items = n-block_idx >= BLOCK_SIZE ? BLOCK_SIZE : n - block_idx;
- int block_end = block_idx + valid_items;
-
- struct quantize_block_args *arg = args[block_idx/BLOCK_SIZE];
- arg->bin_searcher = &bin_searcher;
- arg->code = code;
- arg->A = A;
- arg->absmax = absmax;
- arg->out = out;
- arg->block_end = block_end;
- arg->block_idx = block_idx;
- arg->threadidx = block_idx/BLOCK_SIZE;
-
- pthread_create(&threads[block_idx/BLOCK_SIZE], NULL, &quantize_block, (void *)arg);
- }
-
- for(int i = 0; i < num_blocks; i++)
- int err = pthread_join(threads[i], NULL);
-
- free(threads);
- for(int i = 0; i < num_blocks; i++)
- free(args[i]);
- free(args);
-}
-
-
-void dequantize_cpu(float *code, unsigned char *A, float *absmax, float *out, int n)
-{
- for(int block_idx = 0; block_idx < n; block_idx+=BLOCK_SIZE)
- {
- int valid_items = n-block_idx >= BLOCK_SIZE ? BLOCK_SIZE : n - block_idx;
- int block_end = block_idx + valid_items;
- for (int i = block_idx; i < block_end; i++)
- out[i] = code[A[i]]*absmax[block_idx/BLOCK_SIZE];
- }
+template<typename T>
+void estimateQuantiles(T *A, float *code, float offset, int n) {
+ int blocks = n / 4096;
+ blocks = n % 4096 == 0 ? blocks : blocks + 1;
+ CUDA_CHECK_RETURN(cudaMemset(code, 0, 256 * sizeof(float)));
+ kEstimateQuantiles < T ><<<blocks, 512>>>(A, code, offset, std::numeric_limits<T>::max(), n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
-void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n)
-{
- int threads = 512;
- int blocks = n/threads;
- blocks = n % threads == 0 ? blocks : blocks + 1;
- kHistogramScatterAdd2D<<<blocks, 512>>>(histogram, index1, index2, src, maxidx1, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
+void quantize(float *code, float *A, unsigned char *out, int n) {
+ int blocks = n / 1024;
+ blocks = n % 1024 == 0 ? blocks : blocks + 1;
+ kQuantize<<<blocks, 1024>>>(code, A, out, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
-template <typename T> void estimateQuantiles(T *A, float *code, float offset, int n)
-{
- int blocks = n/4096;
- blocks = n % 4096 == 0 ? blocks : blocks + 1;
- CUDA_CHECK_RETURN(cudaMemset(code, 0, 256*sizeof(float)));
- kEstimateQuantiles<T><<<blocks, 512>>>(A, code, offset, std::numeric_limits<T>::max(), n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
+void dequantize(float *code, unsigned char *A, float *out, int n) {
+ int blocks = n / 1024;
+ blocks = n % 1024 == 0 ? blocks : blocks + 1;
+ kDequantize<<<blocks, 1024>>>(code, A, out, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
-void quantize(float *code, float *A, unsigned char *out, int n)
-{
- int blocks = n/1024;
- blocks = n % 1024 == 0 ? blocks : blocks + 1;
- kQuantize<<<blocks, 1024>>>(code, A, out, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
+template<typename T, int STOCHASTIC>
+void quantizeBlockwise(float *code, T *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n) {
+ int blocks = n / 4096;
+ blocks = n % 4096 == 0 ? blocks : blocks + 1;
+ kQuantizeBlockwise < T, 4096, 4, STOCHASTIC ><<<blocks, 1024>>>(code, A, absmax, out, rand, rand_offset, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
-void dequantize(float *code, unsigned char *A, float *out, int n)
-{
- int blocks = n/1024;
- blocks = n % 1024 == 0 ? blocks : blocks + 1;
- kDequantize<<<blocks, 1024>>>(code, A, out, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
+template<typename T>
+void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int blocksize, const int n) {
+ int blocks = n / blocksize;
+ blocks = n % blocksize == 0 ? blocks : blocks + 1;
+ if (blocksize == 4096)
+ kDequantizeBlockwise < T, 4096, 1024, 4 ><<<blocks, 4096 / 4>>>(code, A, absmax, out, n);
+ else if (blocksize == 2048)
+ kDequantizeBlockwise < T, 2048, 512, 4 ><<<blocks, 2048 / 4>>>(code, A, absmax, out, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
-template <typename T, int STOCHASTIC> void quantizeBlockwise(float * code, T *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n)
-{
- int blocks = n/4096;
- blocks = n % 4096 == 0 ? blocks : blocks + 1;
- kQuantizeBlockwise<T, 4096, 4, STOCHASTIC><<<blocks, 1024>>>(code, A, absmax, out, rand, rand_offset, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
-}
-
-template<typename T> void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int blocksize, const int n)
-{
- int blocks = n/blocksize;
- blocks = n % blocksize == 0 ? blocks : blocks + 1;
- if(blocksize == 4096)
- kDequantizeBlockwise<T, 4096, 1024, 4><<<blocks, 4096/4>>>(code, A, absmax, out, n);
- else if(blocksize == 2048)
- kDequantizeBlockwise<T, 2048, 512, 4><<<blocks, 2048/4>>>(code, A, absmax, out, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
-}
-
-template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
- float* state1, float* state2, float *unorm, float max_unorm, float param_norm,
- const float beta1, const float beta2, const float eps, const float weight_decay,
- const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n)
-{
- int blocks = n/4096;
- blocks = n % 4096 == 0 ? blocks : blocks + 1;
- switch(OPTIMIZER)
- {
- case ADAM:
- if(max_unorm > 0.0f)
- {
- CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
- kPreconditionOptimizer32bit2State<T, OPTIMIZER, 4096, 8><<<blocks, 512>>>(g, p, state1, state2, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
- }
- kOptimizer32bit2State<T, OPTIMIZER><<<blocks, 1024>>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
- break;
- case MOMENTUM:
- case RMSPROP:
- case ADAGRAD:
-
- if(max_unorm > 0.0f)
- {
- CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float)));
- kPreconditionOptimizer32bit1State<T, OPTIMIZER, 4096, 8><<<blocks, 512>>>(g, p, state1, unorm, beta1, eps, weight_decay, step, lr, gnorm_scale, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
- }
-
- kOptimizer32bit1State<T, OPTIMIZER><<<blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
- break;
- }
+template<typename T, int OPTIMIZER>
+void optimizer32bit(T *g, T *p,
+ float *state1, float *state2, float *unorm, float max_unorm, float param_norm,
+ const float beta1, const float beta2, const float eps, const float weight_decay,
+ const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n) {
+ int blocks = n / 4096;
+ blocks = n % 4096 == 0 ? blocks : blocks + 1;
+ switch (OPTIMIZER) {
+ case ADAM:
+ if (max_unorm > 0.0f) {
+ CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1 * sizeof(float)));
+ kPreconditionOptimizer32bit2State < T, OPTIMIZER, 4096,
+ 8 ><<<blocks, 512>>>(g, p, state1, state2, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
+ }
+ kOptimizer32bit2State < T,
+ OPTIMIZER ><<<blocks, 1024>>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
+ break;
+ case MOMENTUM:
+ case RMSPROP:
+ case ADAGRAD:
+
+ if (max_unorm > 0.0f) {
+ CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1 * sizeof(float)));
+ kPreconditionOptimizer32bit1State < T, OPTIMIZER, 4096,
+ 8 ><<<blocks, 512>>>(g, p, state1, unorm, beta1, eps, weight_decay, step, lr, gnorm_scale, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
+ }
+
+ kOptimizer32bit1State < T,
+ OPTIMIZER ><<<blocks, 1024>>>(g, p, state1, unorm, max_unorm, param_norm, beta1, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
+ break;
+ }
}
-template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g,
- unsigned char* state1, unsigned char* state2,
- float *unorm, float max_unorm, float param_norm,
- float beta1, float beta2,
- float eps, int step, float lr,
- float* quantiles1, float* quantiles2,
- float* max1, float* max2, float* new_max1, float* new_max2,
- float weight_decay,
- const float gnorm_scale, int n)
-{
- int blocks = n/4096;
- blocks = n % 4096 == 0 ? blocks : blocks + 1;
-
- if(max_unorm > 0.0f){ CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float))); }
-
- switch(OPTIMIZER)
- {
- case ADAM:
- CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
- CUDA_CHECK_RETURN(cudaMemset(new_max2, 0, 1*sizeof(float)));
- kPreconditionOptimizerStatic8bit2State<T, OPTIMIZER><<<blocks, 256>>>(p, g, state1, state2, unorm, beta1, beta2, eps, step, quantiles1, quantiles2, max1, max2, new_max1, new_max2, gnorm_scale, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
- kOptimizerStatic8bit2State<T, OPTIMIZER><<<blocks, 1024>>>(p, g, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
- quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
- break;
- case MOMENTUM:
- case RMSPROP:
- case ADAGRAD:
- CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float)));
- kPreconditionOptimizerStatic8bit1State<T, OPTIMIZER><<<blocks, 256>>>(p, g, state1, unorm, beta1, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
- kOptimizerStatic8bit1State<T, OPTIMIZER><<<blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, eps, step, lr,
- quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
- break;
- default:
- break;
- }
+template<typename T, int OPTIMIZER>
+void optimizerStatic8bit(T *p, T *g,
+ unsigned char *state1, unsigned char *state2,
+ float *unorm, float max_unorm, float param_norm,
+ float beta1, float beta2,
+ float eps, int step, float lr,
+ float *quantiles1, float *quantiles2,
+ float *max1, float *max2, float *new_max1, float *new_max2,
+ float weight_decay,
+ const float gnorm_scale, int n) {
+ int blocks = n / 4096;
+ blocks = n % 4096 == 0 ? blocks : blocks + 1;
+
+ if (max_unorm > 0.0f) { CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1 * sizeof(float))); }
+
+ switch (OPTIMIZER) {
+ case ADAM:
+ CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1 * sizeof(float)));
+ CUDA_CHECK_RETURN(cudaMemset(new_max2, 0, 1 * sizeof(float)));
+ kPreconditionOptimizerStatic8bit2State < T,
+ OPTIMIZER ><<<blocks, 256>>>(p, g, state1, state2, unorm, beta1, beta2, eps, step, quantiles1, quantiles2, max1, max2, new_max1, new_max2, gnorm_scale, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
+ kOptimizerStatic8bit2State < T,
+ OPTIMIZER ><<<blocks, 1024>>>(p, g, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr,
+ quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
+ break;
+ case MOMENTUM:
+ case RMSPROP:
+ case ADAGRAD:
+ CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1 * sizeof(float)));
+ kPreconditionOptimizerStatic8bit1State < T,
+ OPTIMIZER ><<<blocks, 256>>>(p, g, state1, unorm, beta1, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
+ kOptimizerStatic8bit1State < T, OPTIMIZER ><<<blocks, 1024>>>(p, g, state1, unorm, max_unorm, param_norm, beta1, eps, step, lr,
+ quantiles1, max1, new_max1, weight_decay, gnorm_scale, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
+ break;
+ default:
+ break;
+ }
}
#define BLOCKSIZE_2STATE 2048
@@ -260,42 +150,43 @@ template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g,
#define BLOCKSIZE_1STATE 2048
#define NUM_1STATE 8
-template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g,
- unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,
- float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n)
-{
-
- int blocks = 0;
- switch(OPTIMIZER)
- {
- case ADAM:
- blocks = n/BLOCKSIZE_2STATE;
- blocks = n % BLOCKSIZE_2STATE == 0 ? blocks : blocks + 1;
- kOptimizerStatic8bit2StateBlockwise<T, OPTIMIZER, BLOCKSIZE_2STATE, NUM_2STATE><<<blocks, BLOCKSIZE_2STATE/NUM_2STATE>>>(p, g, state1, state2, beta1, beta2, eps, step, lr,
- quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
- break;
- case MOMENTUM:
- case RMSPROP:
- case ADAGRAD:
- blocks = n/BLOCKSIZE_1STATE;
- blocks = n % BLOCKSIZE_1STATE == 0 ? blocks : blocks + 1;
- kOptimizerStatic8bit1StateBlockwise<T, OPTIMIZER, BLOCKSIZE_1STATE, NUM_1STATE><<<blocks, BLOCKSIZE_1STATE/NUM_1STATE>>>(p, g, state1, beta1, beta2, eps, step, lr,
- quantiles1, absmax1, weight_decay, gnorm_scale, skip_zeros, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
- break;
- }
+template<typename T, int OPTIMIZER>
+void optimizerStatic8bitBlockwise(T *p, T *g,
+ unsigned char *state1, unsigned char *state2, float beta1, float beta2, float eps, int step, float lr,
+ float *quantiles1, float *quantiles2, float *absmax1, float *absmax2, float weight_decay,
+ const float gnorm_scale, bool skip_zeros, int n) {
+
+ int blocks = 0;
+ switch (OPTIMIZER) {
+ case ADAM:
+ blocks = n / BLOCKSIZE_2STATE;
+ blocks = n % BLOCKSIZE_2STATE == 0 ? blocks : blocks + 1;
+ kOptimizerStatic8bit2StateBlockwise < T, OPTIMIZER, BLOCKSIZE_2STATE, NUM_2STATE ><<<blocks, BLOCKSIZE_2STATE /
+ NUM_2STATE>>>(p, g, state1, state2, beta1, beta2, eps, step, lr,
+ quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
+ break;
+ case MOMENTUM:
+ case RMSPROP:
+ case ADAGRAD:
+ blocks = n / BLOCKSIZE_1STATE;
+ blocks = n % BLOCKSIZE_1STATE == 0 ? blocks : blocks + 1;
+ kOptimizerStatic8bit1StateBlockwise < T, OPTIMIZER, BLOCKSIZE_1STATE, NUM_1STATE ><<<blocks, BLOCKSIZE_1STATE /
+ NUM_1STATE>>>(p, g, state1, beta1, beta2, eps, step, lr,
+ quantiles1, absmax1, weight_decay, gnorm_scale, skip_zeros, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
+ break;
+ }
}
-
-template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step, const int n)
-{
- int blocks = n/2048;
- blocks = n % 2048 == 0 ? blocks : blocks + 1;
- CUDA_CHECK_RETURN(cudaMemset(&gnorm_vec[step % 100], 0, 1*sizeof(float)));
- kPercentileClipping<T, 2048, 4><<<blocks, 512>>>(g, gnorm_vec, step, n);
- CUDA_CHECK_RETURN(cudaPeekAtLastError());
+template<typename T>
+void percentileClipping(T *g, float *gnorm_vec, int step, const int n) {
+ int blocks = n / 2048;
+ blocks = n % 2048 == 0 ? blocks : blocks + 1;
+ CUDA_CHECK_RETURN(cudaMemset(&gnorm_vec[step % 100], 0, 1 * sizeof(float)));
+ kPercentileClipping < T, 2048, 4 ><<<blocks, 512>>>(g, gnorm_vec, step, n);
+ CUDA_CHECK_RETURN(cudaPeekAtLastError());
}
@@ -304,13 +195,23 @@ template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step,
//==============================================================
template void estimateQuantiles(half *A, float *code, float offset, int n);
+
template void estimateQuantiles(float *A, float *code, float offset, int n);
-template void quantizeBlockwise<half, 0>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n);
-template void quantizeBlockwise<float, 0>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n);
-template void quantizeBlockwise<half, 1>(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n);
-template void quantizeBlockwise<float, 1>(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n);
+template void
+quantizeBlockwise<half, 0>(float *code, half *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n);
+
+template void
+quantizeBlockwise<float, 0>(float *code, float *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n);
+
+template void
+quantizeBlockwise<half, 1>(float *code, half *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n);
+
+template void
+quantizeBlockwise<float, 1>(float *code, float *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n);
+
template void dequantizeBlockwise<half>(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n);
+
template void dequantizeBlockwise<float>(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n);
#define MAKE_optimizer32bit(name, gtype) \
@@ -320,12 +221,19 @@ template void optimizer32bit<gtype, name>(gtype* g, gtype* p, \
const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
MAKE_optimizer32bit(ADAM, half)
+
MAKE_optimizer32bit(ADAM, float)
+
MAKE_optimizer32bit(MOMENTUM, half)
+
MAKE_optimizer32bit(MOMENTUM, float)
+
MAKE_optimizer32bit(RMSPROP, half)
+
MAKE_optimizer32bit(RMSPROP, float)
+
MAKE_optimizer32bit(ADAGRAD, half)
+
MAKE_optimizer32bit(ADAGRAD, float)
#define MAKE_optimizerStatic8bit(name, gtype) \
@@ -338,11 +246,17 @@ template void optimizerStatic8bit<gtype, name>(gtype* p, gtype* g, unsigned char
float weight_decay, \
const float gnorm_scale, int n); \
+
MAKE_optimizerStatic8bit(ADAM, half)
+
MAKE_optimizerStatic8bit(ADAM, float)
+
MAKE_optimizerStatic8bit(MOMENTUM, half)
+
MAKE_optimizerStatic8bit(MOMENTUM, float)
+
MAKE_optimizerStatic8bit(RMSPROP, half)
+
MAKE_optimizerStatic8bit(RMSPROP, float)
#define MAKE_optimizerStatic8bitBlockwise(gtype, optim_name) \
@@ -350,14 +264,23 @@ template void optimizerStatic8bitBlockwise<gtype, optim_name>(gtype* p, gtype* g
unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr, \
float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n); \
+
MAKE_optimizerStatic8bitBlockwise(half, ADAM);
+
MAKE_optimizerStatic8bitBlockwise(float, ADAM);
+
MAKE_optimizerStatic8bitBlockwise(half, MOMENTUM);
+
MAKE_optimizerStatic8bitBlockwise(float, MOMENTUM);
+
MAKE_optimizerStatic8bitBlockwise(half, RMSPROP);
+
MAKE_optimizerStatic8bitBlockwise(float, RMSPROP);
+
MAKE_optimizerStatic8bitBlockwise(half, ADAGRAD);
+
MAKE_optimizerStatic8bitBlockwise(float, ADAGRAD);
-template void percentileClipping(float * g, float *gnorm_vec, int step, const int n);
-template void percentileClipping(half * g, float *gnorm_vec, int step, const int n);
+template void percentileClipping(float *g, float *gnorm_vec, int step, const int n);
+
+template void percentileClipping(half *g, float *gnorm_vec, int step, const int n);
diff --git a/csrc/ops.cuh b/csrc/ops.cuh
index 1bc13fb..8fb4cec 100644
--- a/csrc/ops.cuh
+++ b/csrc/ops.cuh
@@ -68,16 +68,6 @@ template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g
template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step, const int n);
-void quantize_cpu(float *code, float *A, float *absmax, unsigned char *out, int n);
-void dequantize_cpu(float *code, unsigned char *A, float *absmax, float *out, int n);
-
void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n);
#endif
-
-
-
-
-
-
-
diff --git a/csrc/pythonInterface.c b/csrc/pythonInterface.c
index e0b0d59..229b7ed 100644
--- a/csrc/pythonInterface.c
+++ b/csrc/pythonInterface.c
@@ -3,7 +3,10 @@
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
+#if BUILD_CUDA
#include <ops.cuh>
+#endif
+#include <cpu_ops.h>
// We cannot call templated code from C, so we wrap the template in a C compatible call here if necessary.
// We use macro functions to expand all the different optimizers. Looks ugly, and is ugly, but its better than to
@@ -12,6 +15,7 @@
// UNMANGLED CALLS
//===================================================================================
+#if BUILD_CUDA
void estimateQuantiles_fp32(float *A, float *code, float offset, int n){ estimateQuantiles<float>(A, code, offset, n); }
void estimateQuantiles_fp16(half *A, float *code, float offset, int n){ estimateQuantiles<half>(A, code, offset, n); }
@@ -34,15 +38,15 @@ MAKE_FUNC32(adagrad, ADAGRAD, half, 16)
#define MAKE_FUNC8(fname, oname, gtype, gbits) \
void fname##_static_8bit_g##gbits(gtype* p, gtype* g, unsigned char* state1, unsigned char* state2, \
- float *unorm, float max_unorm, float param_norm, \
+ float *unorm, float max_unorm, float param_norm, \
float beta1, float beta2, \
float eps, int step, float lr, \
float* quantiles1, float* quantiles2, \
float* max1, float* max2, float* new_max1, float* new_max2, \
float weight_decay, float gnorm_scale, int n) \
{ \
- optimizerStatic8bit<gtype, oname>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr, \
- quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n); \
+ optimizerStatic8bit<gtype, oname>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr, \
+ quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n); \
} \
MAKE_FUNC8(adam, ADAM, float, 32)
@@ -78,39 +82,41 @@ void quantizeBlockwise_stochastic_fp32(float * code, float *A, float *absmax, un
void dequantizeBlockwise_fp16(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n){ dequantizeBlockwise<half>(code, A, absmax, out, blocksize, n); } \
void dequantizeBlockwise_fp32(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n){ dequantizeBlockwise<float>(code, A, absmax, out, blocksize, n); }
+#endif
extern "C"
{
- void cestimate_quantiles_fp32(float *A, float *code, float offset, int n){ estimateQuantiles_fp32(A, code, offset, n); }
- void cestimate_quantiles_fp16(half *A, float *code, float offset, int n){ estimateQuantiles_fp16(A, code, offset, n); }
- void cquantize(float *code, float *A, unsigned char *out, int n){ quantize(code, A, out, n); }
- void cdequantize(float *code, unsigned char *A, float *out, int n){ dequantize(code, A, out, n); }
- void cquantize_blockwise_fp16(float * code, half *A, float *absmax, unsigned char *out, const int n){ quantizeBlockwise_fp16(code, A, absmax, out, n); }
- void cquantize_blockwise_fp32(float * code, float *A, float *absmax, unsigned char *out, const int n){ quantizeBlockwise_fp32(code, A, absmax, out, n); }
- void cquantize_blockwise_stochastic_fp16(float * code, half *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n){ quantizeBlockwise_stochastic_fp16(code, A, absmax, out, rand, rand_offset, n); }
- void cquantize_blockwise_stochastic_fp32(float * code, float *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n){ quantizeBlockwise_stochastic_fp32(code, A, absmax, out, rand, rand_offset, n); }
-
- void cdequantize_blockwise_fp16(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n){ dequantizeBlockwise_fp16(code, A, absmax, out, blocksize, n); }
- void cdequantize_blockwise_fp32(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n){ dequantizeBlockwise_fp32(code, A, absmax, out, blocksize, n); }
-
- #define MAKE_CFUNC32(name, gtype, gbits) \
- void c##name##32bit_g##gbits(gtype *g, gtype *p, \
- float* state1, float* state2, float *unorm, float max_unorm, float param_norm, \
- const float beta1, const float beta2, const float eps, const float weight_decay, \
- const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n) \
- { name##32bit_g##gbits(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n); } \
-
- MAKE_CFUNC32(adam, float, 32)
- MAKE_CFUNC32(adam, half, 16)
- MAKE_CFUNC32(momentum, float, 32)
- MAKE_CFUNC32(momentum, half, 16)
- MAKE_CFUNC32(rmsprop, float, 32)
- MAKE_CFUNC32(rmsprop, half, 16)
- MAKE_CFUNC32(adagrad, float, 32)
- MAKE_CFUNC32(adagrad, half, 16)
-
- #define MAKE_CFUNC8(name, gtype, gbits) \
- void c##name##_static_8bit_g##gbits(gtype* p, gtype* g, unsigned char* state1, unsigned char* state2, \
+#if BUILD_CUDA
+void cestimate_quantiles_fp32(float *A, float *code, float offset, int n){ estimateQuantiles_fp32(A, code, offset, n); }
+void cestimate_quantiles_fp16(half *A, float *code, float offset, int n){ estimateQuantiles_fp16(A, code, offset, n); }
+void cquantize(float *code, float *A, unsigned char *out, int n){ quantize(code, A, out, n); }
+void cdequantize(float *code, unsigned char *A, float *out, int n){ dequantize(code, A, out, n); }
+void cquantize_blockwise_fp16(float * code, half *A, float *absmax, unsigned char *out, const int n){ quantizeBlockwise_fp16(code, A, absmax, out, n); }
+void cquantize_blockwise_fp32(float * code, float *A, float *absmax, unsigned char *out, const int n){ quantizeBlockwise_fp32(code, A, absmax, out, n); }
+void cquantize_blockwise_stochastic_fp16(float * code, half *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n){ quantizeBlockwise_stochastic_fp16(code, A, absmax, out, rand, rand_offset, n); }
+void cquantize_blockwise_stochastic_fp32(float * code, float *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n){ quantizeBlockwise_stochastic_fp32(code, A, absmax, out, rand, rand_offset, n); }
+
+void cdequantize_blockwise_fp16(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n){ dequantizeBlockwise_fp16(code, A, absmax, out, blocksize, n); }
+void cdequantize_blockwise_fp32(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n){ dequantizeBlockwise_fp32(code, A, absmax, out, blocksize, n); }
+
+#define MAKE_CFUNC32(name, gtype, gbits) \
+ void c##name##32bit_g##gbits(gtype *g, gtype *p, \
+ float* state1, float* state2, float *unorm, float max_unorm, float param_norm, \
+ const float beta1, const float beta2, const float eps, const float weight_decay, \
+ const int step, const float lr, const float gnorm_scale, bool skip_zeros, const int n) \
+ { name##32bit_g##gbits(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, skip_zeros, n); } \
+
+MAKE_CFUNC32(adam, float, 32)
+MAKE_CFUNC32(adam, half, 16)
+MAKE_CFUNC32(momentum, float, 32)
+MAKE_CFUNC32(momentum, half, 16)
+MAKE_CFUNC32(rmsprop, float, 32)
+MAKE_CFUNC32(rmsprop, half, 16)
+MAKE_CFUNC32(adagrad, float, 32)
+MAKE_CFUNC32(adagrad, half, 16)
+
+#define MAKE_CFUNC8(name, gtype, gbits) \
+ void c##name##_static_8bit_g##gbits(gtype* p, gtype* g, unsigned char* state1, unsigned char* state2, \
float *unorm, float max_unorm, float param_norm, \
float beta1, float beta2, \
float eps, int step, float lr, \
@@ -118,40 +124,40 @@ extern "C"
float* max1, float* max2, float* new_max1, float* new_max2, \
float weight_decay, float gnorm_scale, int n) \
{ \
- name##_static_8bit_g##gbits(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr, \
- quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n); \
+ name##_static_8bit_g##gbits(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr, \
+ quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n); \
} \
- MAKE_CFUNC8(adam, float, 32)
- MAKE_CFUNC8(adam, half, 16)
- MAKE_CFUNC8(momentum, float, 32)
- MAKE_CFUNC8(momentum, half, 16)
- MAKE_CFUNC8(rmsprop, float, 32)
- MAKE_CFUNC8(rmsprop, half, 16)
+MAKE_CFUNC8(adam, float, 32)
+MAKE_CFUNC8(adam, half, 16)
+MAKE_CFUNC8(momentum, float, 32)
+MAKE_CFUNC8(momentum, half, 16)
+MAKE_CFUNC8(rmsprop, float, 32)
+MAKE_CFUNC8(rmsprop, half, 16)
- #define MAKE_CBLOCKWISE8(fname, optim_name, gtype, gbits) \
+#define MAKE_CBLOCKWISE8(fname, optim_name, gtype, gbits) \
void c##fname##_8bit_blockwise_fp##gbits(gtype* p, gtype* g, \
unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr, \
float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, bool skip_zeros, int n) \
{ fname##_8bit_blockwise_fp##gbits(p, g, state1, state2, beta1, beta2, eps, step, lr, quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, skip_zeros, n); } \
- MAKE_CBLOCKWISE8(adam, ADAM, half, 16)
- MAKE_CBLOCKWISE8(adam, ADAM, float, 32)
- MAKE_CBLOCKWISE8(momentum, MOMENTUM, half, 16)
- MAKE_CBLOCKWISE8(momentum, MOMENTUM, float, 32)
- MAKE_CBLOCKWISE8(rmsprop, RMSPROP, half, 16)
- MAKE_CBLOCKWISE8(rmsprop, RMSPROP, float, 32)
- MAKE_CBLOCKWISE8(adagrad, ADAGRAD, half, 16)
- MAKE_CBLOCKWISE8(adagrad, ADAGRAD, float, 32)
+MAKE_CBLOCKWISE8(adam, ADAM, half, 16)
+MAKE_CBLOCKWISE8(adam, ADAM, float, 32)
+MAKE_CBLOCKWISE8(momentum, MOMENTUM, half, 16)
+MAKE_CBLOCKWISE8(momentum, MOMENTUM, float, 32)
+MAKE_CBLOCKWISE8(rmsprop, RMSPROP, half, 16)
+MAKE_CBLOCKWISE8(rmsprop, RMSPROP, float, 32)
+MAKE_CBLOCKWISE8(adagrad, ADAGRAD, half, 16)
+MAKE_CBLOCKWISE8(adagrad, ADAGRAD, float, 32)
- void cpercentile_clipping_g32(float * g, float *gnorm_vec, int step, const int n){ percentileClipping_g32(g, gnorm_vec, step, n); }
- void cpercentile_clipping_g16(half * g, float *gnorm_vec, int step, const int n){ percentileClipping_g16(g, gnorm_vec, step, n); }
+void cpercentile_clipping_g32(float * g, float *gnorm_vec, int step, const int n){ percentileClipping_g32(g, gnorm_vec, step, n); }
+void cpercentile_clipping_g16(half * g, float *gnorm_vec, int step, const int n){ percentileClipping_g16(g, gnorm_vec, step, n); }
+void chistogram_scatter_add_2d(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n){ histogramScatterAdd2D(histogram, index1, index2, src, maxidx1, n); }
+#endif
- void cquantize_blockwise_cpu_fp32(float *code, float *A, float *absmax, unsigned char *out, const int n){ quantize_cpu(code, A, absmax, out, n); }
- void cdequantize_blockwise_cpu_fp32(float *code, unsigned char *A, float *absmax, float *out, const int n){ dequantize_cpu(code, A, absmax, out, n); }
-
- void chistogram_scatter_add_2d(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n){ histogramScatterAdd2D(histogram, index1, index2, src, maxidx1, n); }
+void cquantize_blockwise_cpu_fp32(float *code, float *A, float *absmax, unsigned char *out, const int n){ quantize_cpu(code, A, absmax, out, n); }
+void cdequantize_blockwise_cpu_fp32(float *code, unsigned char *A, float *absmax, float *out, const int n){ dequantize_cpu(code, A, absmax, out, n); }
}