summaryrefslogtreecommitdiff
path: root/include/Algo-Direct2.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/Algo-Direct2.h')
-rw-r--r--include/Algo-Direct2.h305
1 files changed, 305 insertions, 0 deletions
diff --git a/include/Algo-Direct2.h b/include/Algo-Direct2.h
new file mode 100644
index 0000000..d5fa58d
--- /dev/null
+++ b/include/Algo-Direct2.h
@@ -0,0 +1,305 @@
+#pragma once
+
+#include "Algo-Direct-Common.h"
+
+namespace BinSearch {
+namespace Details {
+
+template <typename T, Algos A>
+struct AlgoScalarBase<T, A, typename std::enable_if<DirectAux::IsDirect2<A>::value>::type> : DirectAux::DirectInfo<2, T, A>
+{
+private:
+ typedef DirectAux::DirectInfo<2, T, A> base_t;
+ static const size_t Offset=2;
+
+public:
+ AlgoScalarBase(const T* x, const uint32 n)
+ : base_t(x, n)
+ {
+ }
+
+ FORCE_INLINE uint32 scalar(T z) const
+ {
+ const T* px = base_t::data.xi;
+ const uint32* buckets = reinterpret_cast<const uint32 *>(base_t::data.buckets);
+ uint32 bidx = base_t::fun_t::f(base_t::data.scaler, base_t::data.cst0, z);
+ uint32 iidx = buckets[bidx];
+ px += iidx;
+ if (z < *px)
+ --iidx;
+ if (z < *(px+1))
+ --iidx;
+ return iidx;
+ }
+};
+
+
+template <InstrSet I, typename T, Algos A>
+struct AlgoVecBase<I, T, A, typename std::enable_if<DirectAux::IsDirect2<A>::value>::type> : AlgoScalarBase<T, A>
+{
+ static const uint32 nElem = sizeof(typename InstrFloatTraits<I, T>::vec_t) / sizeof(T);
+
+ typedef FVec<I, T> fVec;
+ typedef IVec<SSE, T> i128;
+
+ struct Constants
+ {
+ fVec vscaler;
+ fVec vcst0;
+ IVec<I, T> one;
+ };
+
+private:
+ typedef AlgoScalarBase<T, A> base_t;
+
+ FORCE_INLINE
+ //NO_INLINE
+ void resolve(const FVec<SSE, float>& vz, const IVec<SSE, float>& bidx, uint32 *pr) const
+ {
+ union U {
+ __m128i vec;
+ uint32 ui32[4];
+ } u;
+
+ const uint32* buckets = reinterpret_cast<const uint32 *>(base_t::data.buckets);
+ const float *xi = base_t::data.xi;
+
+ // read indices t
+ const double *p3 = reinterpret_cast<const double *>(&xi[(u.ui32[3] = buckets[bidx.get3()])]);
+ const double *p2 = reinterpret_cast<const double *>(&xi[(u.ui32[2] = buckets[bidx.get2()])]);
+ const double *p1 = reinterpret_cast<const double *>(&xi[(u.ui32[1] = buckets[bidx.get1()])]);
+ const double *p0 = reinterpret_cast<const double *>(&xi[(u.ui32[0] = buckets[bidx.get0()])]);
+
+#if 0
+ // read pairs ( X(t-1), X(t) )
+ __m128 xp3 = _mm_castpd_ps(_mm_load_sd(p3));
+ __m128 xp2 = _mm_castpd_ps(_mm_load_sd(p2));
+ __m128 xp1 = _mm_castpd_ps(_mm_load_sd(p1));
+ __m128 xp0 = _mm_castpd_ps(_mm_load_sd(p0));
+
+ // build:
+ // { X(t(0)-1), X(t(1)-1), X(t(2)-1), X(t(3)-1) }
+ // { X(t(0)), X(t(1)), X(t(2)), X(t(3)) }
+ __m128 h13 = _mm_shuffle_ps(xp1, xp3, (1 << 2) + (1 << 6));
+ __m128 h02 = _mm_shuffle_ps(xp0, xp2, (1 << 2) + (1 << 6));
+ __m128 u01 = _mm_unpacklo_ps(h02, h13);
+ __m128 u23 = _mm_unpackhi_ps(h02, h13);
+ __m128 vxm = _mm_shuffle_ps(u01, u23, (0) + (1 << 2) + (0 << 4) + (1 << 6));
+ __m128 vxp = _mm_shuffle_ps(u01, u23, (2) + (3 << 2) + (2 << 4) + (3 << 6));
+#else
+ __m128 xp23 = _mm_castpd_ps(_mm_set_pd(*p3, *p2));
+ __m128 xp01 = _mm_castpd_ps(_mm_set_pd(*p1, *p0));
+ __m128 vxm = _mm_shuffle_ps(xp01, xp23, (0) + (2 << 2) + (0 << 4) + (2 << 6));
+ __m128 vxp = _mm_shuffle_ps(xp01, xp23, (1) + (3 << 2) + (1 << 4) + (3 << 6));
+#endif
+ IVec<SSE, float> i(u.vec);
+ IVec<SSE, float> vlem = vz < vxm;
+ IVec<SSE, float> vlep = vz < vxp;
+ i = i + vlem + vlep;
+ i.store(pr);
+ }
+
+ FORCE_INLINE
+ //NO_INLINE
+ void resolve(const FVec<SSE, double>& vz, const IVec<SSE, float>& bidx, uint32 *pr) const
+ {
+ const uint32* buckets = reinterpret_cast<const uint32 *>(base_t::data.buckets);
+ const double *xi = base_t::data.xi;
+
+ uint32 b1 = buckets[bidx.get1()];
+ uint32 b0 = buckets[bidx.get0()];
+
+ const double *p1 = &xi[b1];
+ const double *p0 = &xi[b0];
+
+ // read pairs ( X(t-1), X(t) )
+ __m128d vx1 = _mm_loadu_pd(p1);
+ __m128d vx0 = _mm_loadu_pd(p0);
+
+ // build:
+ // { X(t(0)-1), X(t(1)-1) }
+ // { X(t(0)), X(t(1)) }
+ __m128d vxm = _mm_shuffle_pd(vx0, vx1, 0);
+ __m128d vxp = _mm_shuffle_pd(vx0, vx1, 3);
+
+ IVec<SSE, double> i(b1, b0);
+ IVec<SSE, double> vlem = (vz < vxm);
+ IVec<SSE, double> vlep = (vz < vxp);
+ i = i + vlem + vlep;
+
+ union {
+ __m128i vec;
+ uint32 ui32[4];
+ } u;
+ u.vec = i;
+ pr[0] = u.ui32[0];
+ pr[1] = u.ui32[2];
+ }
+
+#ifdef USE_AVX
+
+ FORCE_INLINE
+ //NO_INLINE
+ void resolve(const FVec<AVX, float>& vz, const IVec<AVX, float>& bidx, uint32 *pr) const
+ {
+ const uint32* buckets = reinterpret_cast<const uint32 *>(base_t::data.buckets);
+ const float *xi = base_t::data.xi;
+
+#if 0 // use gather instructions
+
+ IVec<AVX,float> idxm;
+ idxm.setidx(buckets, bidx);
+ __m256i z = _mm256_setzero_si256();
+ IVec<AVX,float> minusone = _mm256_cmpeq_epi32(z,z);
+ IVec<AVX,float> idxp = idxm - minusone;
+
+ FVec<AVX, float> vxm = _mm256_i32gather_ps(xi, idxm, sizeof(float));
+ FVec<AVX, float> vxp = _mm256_i32gather_ps(xi, idxp, sizeof(float));
+ IVec<AVX, float> ip = idxm;
+
+#else // do not use gather instrucions
+
+ union U {
+ __m256i vec;
+ uint32 ui32[8];
+ } u;
+
+ // read indices t
+
+ const double *p7 = reinterpret_cast<const double *>(&xi[(u.ui32[7] = buckets[bidx.get7()])]);
+ const double *p6 = reinterpret_cast<const double *>(&xi[(u.ui32[6] = buckets[bidx.get6()])]);
+ const double *p5 = reinterpret_cast<const double *>(&xi[(u.ui32[5] = buckets[bidx.get5()])]);
+ const double *p4 = reinterpret_cast<const double *>(&xi[(u.ui32[4] = buckets[bidx.get4()])]);
+ const double *p3 = reinterpret_cast<const double *>(&xi[(u.ui32[3] = buckets[bidx.get3()])]);
+ const double *p2 = reinterpret_cast<const double *>(&xi[(u.ui32[2] = buckets[bidx.get2()])]);
+ const double *p1 = reinterpret_cast<const double *>(&xi[(u.ui32[1] = buckets[bidx.get1()])]);
+ const double *p0 = reinterpret_cast<const double *>(&xi[(u.ui32[0] = buckets[bidx.get0()])]);
+
+#if 0 // perform 8 loads in double precision
+
+ // read pairs ( X(t-1), X(t) )
+ __m128 xp7 = _mm_castpd_ps(_mm_load_sd(p7));
+ __m128 xp6 = _mm_castpd_ps(_mm_load_sd(p6));
+ __m128 xp5 = _mm_castpd_ps(_mm_load_sd(p5));
+ __m128 xp4 = _mm_castpd_ps(_mm_load_sd(p4));
+ __m128 xp3 = _mm_castpd_ps(_mm_load_sd(p3));
+ __m128 xp2 = _mm_castpd_ps(_mm_load_sd(p2));
+ __m128 xp1 = _mm_castpd_ps(_mm_load_sd(p1));
+ __m128 xp0 = _mm_castpd_ps(_mm_load_sd(p0));
+
+ // build:
+ // { X(t(0)-1), X(t(1)-1), X(t(2)-1), X(t(3)-1) }
+ // { X(t(0)), X(t(1)), X(t(2)), X(t(3)) }
+ __m128 h57 = _mm_shuffle_ps(xp5, xp7, (1 << 2) + (1 << 6)); // F- F+ H- H+
+ __m128 h46 = _mm_shuffle_ps(xp4, xp6, (1 << 2) + (1 << 6)); // E- E+ G- G+
+ __m128 h13 = _mm_shuffle_ps(xp1, xp3, (1 << 2) + (1 << 6)); // B- B+ D- D+
+ __m128 h02 = _mm_shuffle_ps(xp0, xp2, (1 << 2) + (1 << 6)); // A- A+ C- C+
+
+ __m128 u01 = _mm_unpacklo_ps(h02, h13); // A- B- A+ B+
+ __m128 u23 = _mm_unpackhi_ps(h02, h13); // C- D- C+ D+
+ __m128 u45 = _mm_unpacklo_ps(h46, h57); // E- F- E+ F+
+ __m128 u67 = _mm_unpackhi_ps(h46, h57); // G- H- G+ H+
+
+ __m128 abcdm = _mm_shuffle_ps(u01, u23, (0) + (1 << 2) + (0 << 4) + (1 << 6)); // A- B- C- D-
+ __m128 abcdp = _mm_shuffle_ps(u01, u23, (2) + (3 << 2) + (2 << 4) + (3 << 6)); // A+ B+ C+ D+
+ __m128 efghm = _mm_shuffle_ps(u45, u67, (0) + (1 << 2) + (0 << 4) + (1 << 6)); // E- F- G- H-
+ __m128 efghp = _mm_shuffle_ps(u45, u67, (2) + (3 << 2) + (2 << 4) + (3 << 6)); // E+ F+ G+ H+
+
+ FVec<AVX, float> vxp = _mm256_insertf128_ps(_mm256_castps128_ps256(abcdm), efghm, 1);
+ FVec<AVX, float> vxm = _mm256_insertf128_ps(_mm256_castps128_ps256(abcdp), efghp, 1);
+
+ IVec<AVX, float> ip(u.vec);
+
+#else // use __mm256_set_pd
+
+ // read pairs ( X(t-1), X(t) )
+ __m256 x0145 = _mm256_castpd_ps(_mm256_set_pd(*p5, *p4, *p1, *p0)); // { x0(t-1), x0(t), x1(t-1), x1(t), x4(t-1), x4(t), x5(t-1), x5(t) }
+ __m256 x2367 = _mm256_castpd_ps(_mm256_set_pd(*p7, *p6, *p3, *p2)); // { x2(t-1), x2(t), x3(t-1), x3(t), x6(t-1), x6(t), x7(t-1), x7(t) }
+
+ // { x0(t-1), x1(t-1), x2(t-1), 3(t-1, x4(t-1), x5(t-1), x6(t-1), xt(t-1) }
+ FVec<AVX, float> vxm = _mm256_shuffle_ps(x0145, x2367, 0 + (2 << 2) + (0 << 4) + (2 << 6) );
+ // { x0(t), x1(t), x2(t), 3(t, x4(t), x5(t), x6(t), xt(t) }
+ FVec<AVX, float> vxp = _mm256_shuffle_ps(x0145, x2367, 1 + (3 << 2) + (1 << 4) + (3 << 6) );
+
+ IVec<AVX, float> ip(u.vec);
+
+#endif
+
+#endif
+
+ IVec<AVX, float> vlem = vz < vxm;
+ IVec<AVX, float> vlep = vz < vxp;
+ ip = ip + vlem + vlep;
+
+ ip.store(pr);
+ }
+
+
+
+ FORCE_INLINE
+ //NO_INLINE
+ void resolve(const FVec<AVX, double>& vz, const IVec<SSE, float>& bidx, uint32 *pr) const
+ {
+ union {
+ __m256i vec;
+ uint64 ui64[4];
+ } u;
+
+ const uint32* buckets = reinterpret_cast<const uint32 *>(base_t::data.buckets);
+ const double *xi = base_t::data.xi;
+
+ // read indices t
+ const double *p3 = &xi[(u.ui64[3] = buckets[bidx.get3()])];
+ const double *p2 = &xi[(u.ui64[2] = buckets[bidx.get2()])];
+ const double *p1 = &xi[(u.ui64[1] = buckets[bidx.get1()])];
+ const double *p0 = &xi[(u.ui64[0] = buckets[bidx.get0()])];
+
+ // read pairs ( X(t-1), X(t) )
+ __m128d xp3 = _mm_loadu_pd(p3);
+ __m128d xp2 = _mm_loadu_pd(p2);
+ __m128d xp1 = _mm_loadu_pd(p1);
+ __m128d xp0 = _mm_loadu_pd(p0);
+
+ // build:
+ // { X(t(0)-1), X(t(1)-1), X(t(2)-1), X(t(3)-1) }
+ // { X(t(0)), X(t(1)), X(t(2)), X(t(3)) }
+ __m256d x02 = _mm256_insertf128_pd(_mm256_castpd128_pd256(xp0), xp2, 1);
+ __m256d x13 = _mm256_insertf128_pd(_mm256_castpd128_pd256(xp1), xp3, 1);
+ FVec<AVX, double> vxm = _mm256_unpacklo_pd(x02,x13);
+ FVec<AVX, double> vxp = _mm256_unpackhi_pd(x02,x13);
+
+
+// __m128d h01m = _mm_shuffle_pd(xp0, xp1, 0);
+// __m128d h23m = _mm_shuffle_pd(xp2, xp3, 0);
+// __m128d h01p = _mm_shuffle_pd(xp0, xp1, 3);
+// __m128d h23p = _mm_shuffle_pd(xp2, xp3, 3);
+// FVec<AVX, double> vxm = _mm256_insertf128_pd(_mm256_castpd128_pd256(h01m), h23m, 1);
+// FVec<AVX, double> vxp = _mm256_insertf128_pd(_mm256_castpd128_pd256(h01p), h23p, 1);
+
+ IVec<AVX, double> i(u.vec);
+ IVec<AVX, double> vlem = vz < vxm;
+ IVec<AVX, double> vlep = vz < vxp;
+ i = i + vlem + vlep;
+ i.extractLo32s().store(pr);
+ }
+#endif
+
+public:
+
+ AlgoVecBase(const T* x, const uint32 n) : base_t(x, n) {}
+
+ void initConstants(Constants& cst) const
+ {
+ cst.vscaler.setN(base_t::data.scaler);
+ cst.vcst0.setN(base_t::data.cst0);
+ cst.one.setN(uint32(1));
+ }
+
+ void vectorial(uint32 *pr, const T *pz, const Constants& cst) const
+ {
+ fVec vz(pz);
+ resolve(vz, base_t::fun_t::f(cst.vscaler, cst.vcst0, vz), pr);
+ }
+};
+} // namespace Details
+} // namespace BinSearch