From bcab99ec877ba063543bd7c03ba1cdd1b06e8078 Mon Sep 17 00:00:00 2001 From: Tim Dettmers Date: Tue, 26 Jul 2022 17:39:30 -0700 Subject: Working outlier extraction for Turing. --- csrc/kernels.cu | 61 +++++++++++++++++++++++++++++++++++++++++++++--- csrc/kernels.cuh | 2 +- csrc/ops.cu | 5 ++-- tests/test_functional.py | 23 ++++++++++-------- 4 files changed, 74 insertions(+), 17 deletions(-) diff --git a/csrc/kernels.cu b/csrc/kernels.cu index 78170d0..bb36d9b 100644 --- a/csrc/kernels.cu +++ b/csrc/kernels.cu @@ -2592,16 +2592,71 @@ __global__ void kspmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *o } } -template __global__ void kExtractOutliers(char *A, int *idx, char *out, int rowsA, int colsA, int tiledRowsA, int tiledColsA) +template __global__ void kExtractOutliers(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA) { + int local_colidx = idx[blockIdx.x]; + + if(FORMAT==COL_TURING) + { + // TURING FORMAT: + // 8*32 tiles with 4*4 subtiles + // the 8*32 subtile has first all 4*4 subtiles of even rows (max 4*4*8 = 128 elements) + // the subsequent 4*4 subtiles are for all odd rows if some rows columns are empty the values are zero + // the tile repeats again after the 8*32 tile in a major column order, meaning: (next 8 rows are A[8:16, 0:32]) + // the next tile is the next 8 rows for the same 32 columns. Once all rows are finished, the column + // index increases by 32 + // columns are grouped in increments of 4, meaning that one has the following rows and columns + // rows: [0 0 0 0, 2 2 2 2, 4 4 4 4, 6 6 6 6, 0 0 0 0 ...] + // cols: [0 1 2 3, 0 1 2 4, 0 1 2 3, 0 1 2 3, 4 5 6 7 ...] + + // each thread reads 1 element = 1 row + for(int row = threadIdx.x; row < rowsA; row+= blockDim.x) + { + int offset_per_col_tile = ((rowsA+7)/8)*32*8; + int tile_offset_rows = (row/8)*32*8; + int tile_offset_cols = (local_colidx/32)*offset_per_col_tile; + int offset = 0; + int subtile_col_idx = local_colidx%32; + int subtile_row_idx = row % 8; + if(row % 2 == 1) + offset += 128 + (subtile_col_idx/4)*16 + (subtile_col_idx%4) + ((subtile_row_idx-1)*2); + else + // even + offset += 0 + (subtile_col_idx/4)*16 + (subtile_col_idx%4) + (subtile_row_idx*2); + + offset += tile_offset_rows + tile_offset_cols; + + + char val = 0; + //printf("(%i (%i %i) (%i %i))\n", offset, tile_offset_rows, tile_offset_cols, row, local_colidx); + if(offset > tiledColsA*tiledRowsA) + printf("(%i (%i %i) (%i %i)\n", offset, tile_offset_rows, tile_offset_cols, row, local_colidx); + else + val = A[offset]; + + int out_idx = (row*idx_size) + blockIdx.x; + + //if(out_idx > colsA*idx_size) + if(val != 0) + { + //printf("(%i %i) = (%i) = %i\n", row, local_colidx, out_idx, (int) val); + out[out_idx] = val; + } + else + { + out[out_idx] = val; + } + } + + } } //============================================================== // TEMPLATE DEFINITIONS //============================================================== -template __global__ void kExtractOutliers(char *A, int *idx, char *out, int rowsA, int colsA, int tiledRowsA, int tiledColsA); -template __global__ void kExtractOutliers(char *A, int *idx, char *out, int rowsA, int colsA, int tiledRowsA, int tiledColsA); +template __global__ void kExtractOutliers(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA); +template __global__ void kExtractOutliers(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA); template __global__ void kspmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float *dequant_stats, int nnz, int rowsA, int rowsB, int colsB); template __global__ void kspmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, half *B, half *out, float *dequant_stats, int nnz, int rowsA, int rowsB, int colsB); diff --git a/csrc/kernels.cuh b/csrc/kernels.cuh index ec2068e..eda5ba0 100644 --- a/csrc/kernels.cuh +++ b/csrc/kernels.cuh @@ -118,7 +118,7 @@ template __global__ void kTransformRowToFormat(char *__restrict__ const A, char *out, int rows, int cols, int tiledCols, int outRows, int outCols); -template __global__ void kExtractOutliers(char *A, int *idx, char *out, int rowsA, int colsA, int tiledRowsA, int tiledColsA); +template __global__ void kExtractOutliers(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA); #endif diff --git a/csrc/ops.cu b/csrc/ops.cu index fe2d7fe..e6227ae 100644 --- a/csrc/ops.cu +++ b/csrc/ops.cu @@ -586,8 +586,7 @@ template void extractOutliers(char * A, int *idx, char *out, int id int tiledCols = tiledCols = fill_up_to_nearest_multiple(cols, 32); int tiledRows = 0; - int elements = idx_size*cols; // matrix A is transposed, so we extract columns - int num_blocks = (elements+threads-1)/threads; + int num_blocks = idx_size; if(FORMAT == COL_TURING) { @@ -598,7 +597,7 @@ template void extractOutliers(char * A, int *idx, char *out, int id tiledRows = fill_up_to_nearest_multiple(rows, 32); } - kExtractOutliers<<>>(A, idx, out, rows, cols, tiledRows, tiledCols); + kExtractOutliers<<>>(A, idx, out, idx_size, rows, cols, tiledRows, tiledCols); CUDA_CHECK_RETURN(cudaPeekAtLastError()); } diff --git a/tests/test_functional.py b/tests/test_functional.py index b508367..4d06447 100644 --- a/tests/test_functional.py +++ b/tests/test_functional.py @@ -1858,18 +1858,21 @@ def test_zp(): def test_extract_outliers(): - shapeA = (128, 128) - idx = torch.randint(0, shapeA[1], size=(10,)).int() - A = torch.randint(-128, 127, size=shapeA, device='cuda').to(torch.int8) - outliers1 = A[:, idx.long()] - - CA, SA = F.transform(A, 'col_turing') + for i in range(k): + shapeA = (4096, 4*4096) + idx = torch.unique(torch.randint(0, shapeA[1], size=(10,)).int()).cuda() + #idx = torch.Tensor([32]).int().cuda() + A = torch.randint(-128, 127, size=shapeA, device='cuda').to(torch.int8) + outliers1 = A[:, idx.long()] - outliers2 = F.extract_outliers(CA, SA, idx) + CA, SA = F.transform(A, 'col_turing') - assert outliers2.shape[0] == shapeA[0] - assert outliers2.shape[1] == idx.numel() + outliers2 = F.extract_outliers(CA, SA, idx) + assert outliers2.shape[0] == shapeA[0] + assert outliers2.shape[1] == idx.numel() + #print(outliers1) + #print(outliers2) - torch.testing.assert_allclose(outliers1, outliers2) + torch.testing.assert_allclose(outliers1, outliers2) -- cgit v1.2.3