# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import ( Any, Callable, Dict, Iterator, Mapping, Optional, Set, Tuple, TypeVar, Union, overload, ) import torch import torch.nn.functional as F from torch import Tensor, device, dtype, nn from torch.nn.parameter import Parameter import bitsandbytes as bnb from bitsandbytes.optim import GlobalOptimManager T = TypeVar("T", bound="torch.nn.Module") class StableEmbedding(torch.nn.Embedding): def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False, _weight: Optional[Tensor] = None, ) -> None: super(StableEmbedding, self).__init__( num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight, ) self.norm = torch.nn.LayerNorm(embedding_dim) GlobalOptimManager.get_instance().register_module_override( self, "weight", {"optim_bits": 32} ) def reset_parameters(self) -> None: torch.nn.init.xavier_uniform_(self.weight) self._fill_padding_idx_with_zero() """ !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding to make the Layer compatible with Pytorch < 1.9. This means that if this changes in future PyTorch releases this need to change too which is cumbersome. However, with this we can ensure compatibility with previous PyTorch releases. """ def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input: Tensor) -> Tensor: emb = F.embedding( input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) return self.norm(emb) class Embedding(torch.nn.Embedding): def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False, _weight: Optional[Tensor] = None, ) -> None: super(Embedding, self).__init__( num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight, ) GlobalOptimManager.get_instance().register_module_override( self, "weight", {"optim_bits": 32} ) def reset_parameters(self) -> None: torch.nn.init.xavier_uniform_(self.weight) self._fill_padding_idx_with_zero() """ !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding to make the Layer compatible with Pytorch < 1.9. This means that if this changes in future PyTorch releases this need to change too which is cumbersome. However, with this we can ensure compatibility with previous PyTorch releases. """ def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input: Tensor) -> Tensor: emb = F.embedding( input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) return emb class Int8Params(torch.nn.Parameter): def __new__( cls, data=None, requires_grad=True, has_fp16_weights=False, CB=None, SCB=None, ): cls.has_fp16_weights = has_fp16_weights cls.CB = None cls.SCB = None if data is None: data = torch.empty(0) return torch.Tensor._make_subclass(cls, data, requires_grad) def cuda(self, device): if self.has_fp16_weights: return super().cuda(device) else: # we store the 8-bit rows-major weight # we convert this weight to the turning/ampere weight during the first inference pass B = self.data.contiguous().half().cuda(device) CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B) del CBt del SCBt self.data = CB setattr(self, "CB", CB) setattr(self, "SCB", SCB) return self @overload def to( self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ..., non_blocking: bool = ..., ) -> T: ... @overload def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T: ... @overload def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T: ... def to(self, *args, **kwargs): device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to( *args, **kwargs ) if ( device is not None and device.type == "cuda" and self.data.device.type == "cpu" ): return self.cuda(device) else: new_param = Int8Params( super().to( device=device, dtype=dtype, non_blocking=non_blocking ), requires_grad=self.requires_grad, has_fp16_weights=self.has_fp16_weights, ) new_param.CB = self.CB new_param.SCB = self.SCB return new_param class Linear8bitLt(nn.Linear): def __init__( self, input_features, output_features, bias=True, has_fp16_weights=True, threshold=0.0, index=None, ): super(Linear8bitLt, self).__init__( input_features, output_features, bias ) self.state = bnb.MatmulLtState() self.index = index self.state.threshold = threshold self.state.has_fp16_weights = has_fp16_weights if threshold > 0.0 and not has_fp16_weights: self.state.use_pool = True self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights) def init_8bit_state(self): self.state.CB = self.weight.CB self.state.SCB = self.weight.SCB self.weight.CB = None self.weight.SCB = None def forward(self, x): self.state.is_training = self.training if self.weight.CB is not None: self.init_8bit_state() # weights are cast automatically as Int8Params, but the bias has to be cast manually if self.bias is not None and self.bias.dtype != torch.float16: self.bias.data = self.bias.data.half() out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state) if not self.state.has_fp16_weights and self.state.CxB is not None: # In this version, we convert 8-bit row major to turing/ampere format at each inference pass # Thus, we delete CxB from the state. TODO: do not store it in the state in the first place. del self.state.CxB return out class Linear8bit(nn.Linear): def __init__( self, input_features, output_features, bias=True, quant_type="vector", index=None, args=None, sparse_decomp=False, ): super(Linear8bit, self).__init__(input_features, output_features, bias) self.quant_type = quant_type self.index = index self.args = args self.iter = 0 def forward(self, x): self.iter += 1 if self.iter % self.args.clip_freq == 0: with torch.no_grad(): maxval, maxidx = torch.topk( torch.abs(self.weight.flatten()), k=self.args.clip_idx ) if not dist.is_initialized() or dist.get_rank() == 0: print("clip", maxval[-1].item()) self.weight.clip_(-maxval[-1], maxval[-1]) if self.args is not None: out = bnb.nn.functional.sparse_decomposed_linear8bit( x, self.weight, self.bias, qval=self.args.sparse_decomp_val, quant_type=self.args.quant_type, ) else: out = bnb.nn.functional.linear8bit( x, self.weight, self.bias, quant_type=self.args.quant_type ) return out