// Copyright (c) Facebook, Inc. and its affiliates. // // This source code is licensed under the MIT license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include using namespace BinSearch; using std::cout; using std::endl; #define BLOCK_SIZE 4096 struct quantize_block_args { BinAlgo *bin_searcher; float *code; float *A; float *absmax; unsigned char *out; int block_end; int block_idx; int threadidx; }; void *quantize_block(void *arguments) { // 1. find absmax in block // 2. divide input value by absmax to normalize into [-1.0, 1.0] // 3. do binary search to find the closest value // 4. check minimal distance // 5. store index struct quantize_block_args *args = (quantize_block_args*)arguments; // 1. find absmax in block float absmax_block = -FLT_MAX; for (int i = args->block_idx; i < args->block_end; i++) absmax_block = fmax(absmax_block, fabs(args->A[i])); args->absmax[args->block_idx/BLOCK_SIZE] = absmax_block; for (int i = args->block_idx; i < args->block_end; i++) { // 2. divide input value by absmax to normalize into [-1.0, 1.0] // 3. do binary search to find the closest value float normed_value = args->A[i]/absmax_block; int idx = args->bin_searcher->scalar(normed_value); // 4. check minimal distance // The binary search returns always the value to the left, which might not be the closest value if(idx < 255) { float dist_left = fabs(normed_value-(args->code[idx])); float dist_right = fabs(normed_value-(args->code[idx+1])); if(dist_right < dist_left){ idx+=1; } } // 5. store index args->out[i] = (unsigned char)idx; } return NULL; } void quantize_cpu(float *code, float *A, float *absmax, unsigned char *out, int n) { // the default code is has range [-0.993, 1.0] which can cause an error in the binary search algorithm used below code[0] = -1.0f; int num_blocks = n/BLOCK_SIZE; num_blocks += n % BLOCK_SIZE == 0 ? 0 : 1; pthread_t *threads = (pthread_t*)malloc(sizeof(pthread_t)*num_blocks); struct quantize_block_args **args = (quantize_block_args**)malloc(num_blocks*sizeof(quantize_block_args*)); for(int i = 0; i < num_blocks; i++) args[i] = (quantize_block_args*)malloc(sizeof(quantize_block_args)); const uint32 elements_code = 256; BinAlgo bin_searcher(code, elements_code); for(int block_idx = 0; block_idx < n; block_idx+=BLOCK_SIZE) { int valid_items = n-block_idx >= BLOCK_SIZE ? BLOCK_SIZE : n - block_idx; int block_end = block_idx + valid_items; struct quantize_block_args *arg = args[block_idx/BLOCK_SIZE]; arg->bin_searcher = &bin_searcher; arg->code = code; arg->A = A; arg->absmax = absmax; arg->out = out; arg->block_end = block_end; arg->block_idx = block_idx; arg->threadidx = block_idx/BLOCK_SIZE; pthread_create(&threads[block_idx/BLOCK_SIZE], NULL, &quantize_block, (void *)arg); } for(int i = 0; i < num_blocks; i++) int err = pthread_join(threads[i], NULL); free(threads); for(int i = 0; i < num_blocks; i++) free(args[i]); free(args); } void dequantize_cpu(float *code, unsigned char *A, float *absmax, float *out, int n) { for(int block_idx = 0; block_idx < n; block_idx+=BLOCK_SIZE) { int valid_items = n-block_idx >= BLOCK_SIZE ? BLOCK_SIZE : n - block_idx; int block_end = block_idx + valid_items; for (int i = block_idx; i < block_end; i++) out[i] = code[A[i]]*absmax[block_idx/BLOCK_SIZE]; } } void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n) { int threads = 512; int blocks = n/threads; blocks = n % threads == 0 ? blocks : blocks + 1; kHistogramScatterAdd2D<<>>(histogram, index1, index2, src, maxidx1, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); } template void estimateQuantiles(T *A, float *code, float offset, int n) { int blocks = n/4096; blocks = n % 4096 == 0 ? blocks : blocks + 1; CUDA_CHECK_RETURN(cudaMemset(code, 0, 256*sizeof(float))); kEstimateQuantiles<<>>(A, code, offset, std::numeric_limits::max(), n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); } void quantize(float *code, float *A, unsigned char *out, int n) { int blocks = n/1024; blocks = n % 1024 == 0 ? blocks : blocks + 1; kQuantize<<>>(code, A, out, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); } void dequantize(float *code, unsigned char *A, float *out, int n) { int blocks = n/1024; blocks = n % 1024 == 0 ? blocks : blocks + 1; kDequantize<<>>(code, A, out, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); } template void quantizeBlockwise(float * code, T *A, float *absmax, unsigned char *out, float *rand, int rand_offset, const int n) { int blocks = n/4096; blocks = n % 4096 == 0 ? blocks : blocks + 1; kQuantizeBlockwise<<>>(code, A, absmax, out, rand, rand_offset, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); } template void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int blocksize, const int n) { int blocks = n/blocksize; blocks = n % blocksize == 0 ? blocks : blocks + 1; if(blocksize == 4096) kDequantizeBlockwise<<>>(code, A, absmax, out, n); else if(blocksize == 2048) kDequantizeBlockwise<<>>(code, A, absmax, out, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); } template void optimizer32bit(T* g, T* p, float* state1, float* state2, float *unorm, float max_unorm, float param_norm, const float beta1, const float beta2, const float eps, const float weight_decay, const int step, const float lr, const float gnorm_scale, const int n) { int blocks = n/4096; blocks = n % 4096 == 0 ? blocks : blocks + 1; switch(OPTIMIZER) { case ADAM: if(max_unorm > 0.0f) { CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float))); kPreconditionOptimizer32bit2State<<>>(g, p, state1, state2, unorm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); } kOptimizer32bit2State<<>>(g, p, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, weight_decay, step, lr, gnorm_scale, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); break; case MOMENTUM: case RMSPROP: if(max_unorm > 0.0f) { CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float))); kPreconditionOptimizer32bit1State<<>>(g, p, state1, unorm, beta1, eps, weight_decay, step, lr, gnorm_scale, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); } kOptimizer32bit1State<<>>(g, p, state1, unorm, max_unorm, param_norm, beta1, eps, weight_decay, step, lr, gnorm_scale, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); break; } } template void optimizerStatic8bit(T* p, T* g, unsigned char* state1, unsigned char* state2, float *unorm, float max_unorm, float param_norm, float beta1, float beta2, float eps, int step, float lr, float* quantiles1, float* quantiles2, float* max1, float* max2, float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale, int n) { int blocks = n/4096; blocks = n % 4096 == 0 ? blocks : blocks + 1; if(max_unorm > 0.0f){ CUDA_CHECK_RETURN(cudaMemset(unorm, 0, 1*sizeof(float))); } switch(OPTIMIZER) { case ADAM: CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float))); CUDA_CHECK_RETURN(cudaMemset(new_max2, 0, 1*sizeof(float))); kPreconditionOptimizerStatic8bit2State<<>>(p, g, state1, state2, unorm, beta1, beta2, eps, step, quantiles1, quantiles2, max1, max2, new_max1, new_max2, gnorm_scale, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); kOptimizerStatic8bit2State<<>>(p, g, state1, state2, unorm, max_unorm, param_norm, beta1, beta2, eps, step, lr, quantiles1, quantiles2, max1, max2, new_max1, new_max2, weight_decay, gnorm_scale, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); break; case MOMENTUM: case RMSPROP: CUDA_CHECK_RETURN(cudaMemset(new_max1, 0, 1*sizeof(float))); kPreconditionOptimizerStatic8bit1State<<>>(p, g, state1, unorm, beta1, eps, step, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); kOptimizerStatic8bit1State<<>>(p, g, state1, unorm, max_unorm, param_norm, beta1, eps, step, lr, quantiles1, max1, new_max1, weight_decay, gnorm_scale, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); break; default: break; } } #define BLOCKSIZE_2STATE 2048 #define NUM_2STATE 8 #define BLOCKSIZE_1STATE 2048 #define NUM_1STATE 8 template void optimizerStatic8bitBlockwise(T* p, T* g, unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr, float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, int n) { int blocks = 0; switch(OPTIMIZER) { case ADAM: blocks = n/BLOCKSIZE_2STATE; blocks = n % BLOCKSIZE_2STATE == 0 ? blocks : blocks + 1; kOptimizerStatic8bit2StateBlockwise<<>>(p, g, state1, state2, beta1, beta2, eps, step, lr, quantiles1, quantiles2, absmax1, absmax2, weight_decay, gnorm_scale, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); break; case MOMENTUM: case RMSPROP: blocks = n/BLOCKSIZE_1STATE; blocks = n % BLOCKSIZE_1STATE == 0 ? blocks : blocks + 1; kOptimizerStatic8bit1StateBlockwise<<>>(p, g, state1, beta1, beta2, eps, step, lr, quantiles1, absmax1, weight_decay, gnorm_scale, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); break; } } template void percentileClipping(T * g, float *gnorm_vec, int step, const int n) { int blocks = n/2048; blocks = n % 2048 == 0 ? blocks : blocks + 1; CUDA_CHECK_RETURN(cudaMemset(&gnorm_vec[step % 100], 0, 1*sizeof(float))); kPercentileClipping<<>>(g, gnorm_vec, step, n); CUDA_CHECK_RETURN(cudaPeekAtLastError()); } //============================================================== // TEMPLATE DEFINITIONS //============================================================== template void estimateQuantiles(half *A, float *code, float offset, int n); template void estimateQuantiles(float *A, float *code, float offset, int n); template void quantizeBlockwise(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n); template void quantizeBlockwise(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n); template void quantizeBlockwise(float * code, half *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n); template void quantizeBlockwise(float * code, float *A, float *absmax, unsigned char *out, float* rand, int rand_offset, const int n); template void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, half *out, int blocksize, const int n); template void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, float *out, int blocksize, const int n); #define MAKE_optimizer32bit(name, gtype) \ template void optimizer32bit(gtype* g, gtype* p, \ float* state1, float* state2, float* unorm, float max_unorm, float param_norm, \ const float beta1, const float beta2, const float eps, const float weight_decay, \ const int step, const float lr, const float gnorm_scale, const int n); MAKE_optimizer32bit(ADAM, half) MAKE_optimizer32bit(ADAM, float) MAKE_optimizer32bit(MOMENTUM, half) MAKE_optimizer32bit(MOMENTUM, float) MAKE_optimizer32bit(RMSPROP, half) MAKE_optimizer32bit(RMSPROP, float) #define MAKE_optimizerStatic8bit(name, gtype) \ template void optimizerStatic8bit(gtype* p, gtype* g, unsigned char* state1, unsigned char* state2, \ float *unorm, float max_unorm, float param_norm, \ float beta1, float beta2, \ float eps, int step, float lr, \ float* quantiles1, float* quantiles2, \ float* max1, float* max2, float* new_max1, float* new_max2, \ float weight_decay, \ const float gnorm_scale, int n); \ MAKE_optimizerStatic8bit(ADAM, half) MAKE_optimizerStatic8bit(ADAM, float) MAKE_optimizerStatic8bit(MOMENTUM, half) MAKE_optimizerStatic8bit(MOMENTUM, float) MAKE_optimizerStatic8bit(RMSPROP, half) MAKE_optimizerStatic8bit(RMSPROP, float) #define MAKE_optimizerStatic8bitBlockwise(gtype, optim_name) \ template void optimizerStatic8bitBlockwise(gtype* p, gtype* g, \ unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr, \ float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale, int n); \ MAKE_optimizerStatic8bitBlockwise(half, ADAM); MAKE_optimizerStatic8bitBlockwise(float, ADAM); MAKE_optimizerStatic8bitBlockwise(half, MOMENTUM); MAKE_optimizerStatic8bitBlockwise(float, MOMENTUM); MAKE_optimizerStatic8bitBlockwise(half, RMSPROP); MAKE_optimizerStatic8bitBlockwise(float, RMSPROP); template void percentileClipping(float * g, float *gnorm_vec, int step, const int n); template void percentileClipping(half * g, float *gnorm_vec, int step, const int n);