1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
import torch
import bitsandbytes as bnb
import bitsandbytes.functional as F
from dataclasses import dataclass
tensor = torch.Tensor
'''
This class pools outlier dimensions across layers.
This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
'''
class GlobalOutlierPooler(object):
_instance = None
def __init__(self):
raise RuntimeError('Call get_instance() instead')
def initialize(self):
self.outliers = set()
self.model_dim = None
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
cls._instance.initialize()
return cls._instance
def add_outliers(self, outlier_idx, feature_dim):
if self.model_dim is None: self.model_dim = feature_dim
if feature_dim != self.model_dim: return # we do not encode outliers for the 2nd FFN layer
self.outliers.update(outlier_idx.tolist())
def get_current_outlier_idx(self):
return torch.Tensor(list(self.outliers)).to(torch.int64)
class MatMul8bit(torch.autograd.Function):
@staticmethod
def forward(ctx, A, B, out=None, quant_type='vector', precision=[8, 8, 8]):
if precision[0] != 8:
with torch.no_grad():
output = torch.matmul(A, B)
else:
if len(B.shape) == 2: dim = 0
else: dim = 1
qA, SA = F.vectorwise_quant(A, dim=-1, quant_type=quant_type)
qB, SB = F.vectorwise_quant(B, dim=dim, quant_type=quant_type)
iout = F.igemm(qA, qB)
output = F.vectorwise_mm_dequant(iout, SA, SB, A.dtype, quant_type)
if A.requires_grad or B.requires_grad:
ctx.save_for_backward(A, B)
ctx.quant_type = quant_type
ctx.precision = precision
return output
@staticmethod
def backward(ctx, grad_output):
A, B = ctx.saved_tensors
quant_type = ctx.quant_type
precision = ctx.precision
grad_A = grad_B = None
if B.requires_grad:
if len(A.shape) == 3:
dims = [0, 1]
# bsi -> ibs
permute_dim = [0, 2, 1]
else:
dims = [0]
# bs -> sb
permute_dim = [1, 0]
if precision[1] != 8:
with torch.no_grad():
grad_B = torch.matmul(A.permute(permute_dim), grad_output)
else:
if len(B.shape) == 2 and len(A.shape) == 3:
grad_output = grad_output.contiguous()
if not grad_output.is_contiguous(): grad_output.contiguous()
qgrad_output, S1 = F.vectorwise_quant(grad_output.view(-1, grad_output.shape[2]), dim=0, quant_type=quant_type)
if not A.is_contiguous(): A = A.contiguous()
qA, S2 = F.vectorwise_quant(A.view(-1, A.shape[2]), dim=0, quant_type=quant_type)
igrad_B = F.igemm(qA.t(), qgrad_output)
grad_B = F.vectorwise_mm_dequant(igrad_B, S2.t(), S1, grad_output.dtype, quant_type)
else:
qgrad_output, S1 = F.vectorwise_quant(grad_output, dim=dims, quant_type=quant_type)
qA, S2 = F.vectorwise_quant(A, dim=dims, quant_type=quant_type)
igrad_B = F.igemm(qA.permute(permute_dim), qgrad_output)
grad_B = F.vectorwise_mm_dequant(igrad_B, S2.permute(permute_dim), S1, grad_output.dtype, quant_type)
if A.requires_grad:
if len(grad_output.shape) == 3: dims = [2]
else: dims = [1]
if len(B.shape) == 3:
# bio -> boi
permute_dim = [0, 2, 1]
dim_B = dims
else:
# io -> oi
permute_dim = [1, 0]
dim_B = [1]
if precision[2] != 8:
with torch.no_grad():
grad_A = torch.matmul(grad_output, B.permute(permute_dim))
else:
qgrad_output, S1 = F.vectorwise_quant(grad_output, dim=dims, quant_type=quant_type)
qB, S3 = F.vectorwise_quant(B, dim=dim_B, quant_type=quant_type)
igrad_A = F.igemm(qgrad_output, qB.permute(permute_dim))
grad_A = F.vectorwise_mm_dequant(igrad_A, S1, S3.permute(permute_dim), grad_output.dtype, quant_type)
return grad_A, grad_B, None, None, None
mm_cublas = MatMul8bit.apply
bmm_cublas = MatMul8bit.apply
matmul_cublas = MatMul8bit.apply
@dataclass
class MatmulLtState:
CB = None
CxB = None
SB = None
SCB = None
CxBt = None
SBt = None
CBt = None
subB = None
outlier_pool = None
has_accumulated_gradients = False
threshold = 0.0
idx = None
is_training = True
has_fp16_weights = True
use_pool = False
formatB = F.get_special_format_str()
def reset_grads(self):
self.CB = None
self.CxB = None
self.SB = None
self.SCB = None
self.CxBt = None
self.SBt = None
self.CBt = None
class MatMul8bitLt(torch.autograd.Function):
@staticmethod
def forward(ctx, A, B, out=None, state=MatmulLtState()):
# 1. Quantize A
# 2. Quantize B
# 3. Matmul
# 4. Mixed-precision decomposition matmul
# 5. Save state
requires_gradA = A.requires_grad
requires_gradB = B.requires_grad
formatB = state.formatB
input_shape = A.shape
if state.outlier_pool is None: state.outlier_pool = GlobalOutlierPooler.get_instance()
assert A.dtype == torch.float16, f'The input data type needs to be fp16 but {A.dtype} was found!'
# 1. Quantize A
if len(A.shape) == 3: A = A.view(-1, A.shape[-1]).contiguous()
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=state.threshold)
if state.threshold > 0.0 and coo_tensorA is not None:
if state.has_fp16_weights:
idx = torch.unique(coo_tensorA.colidx).long()
CA[:, idx] = 0
CAt[:, idx] = 0
subA = A[:, idx]
state.subB = B[:, idx].t().contiguous()
state.idx = idx
else:
if state.CxB is None:
# B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
# we also need to convert it to the turing/ampere format
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
if state.threshold > 0.0 and coo_tensorA is not None and state.idx is None and state.CB is not None:
# generate outlier index and subB
outlier_idx = torch.unique(coo_tensorA.colidx).long()
state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
# do not use pool for 2nd FFN layer
state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
else:
state.idx = outlier_idx
state.subB = (state.CB[:, state.idx].float().t().contiguous()*(state.SCB/127)).half()
if state.idx is not None:
# extract outliers
CA[:, state.idx] = 0
CAt[:, state.idx] = 0
subA = A[:, state.idx]
else:
subA = None
else:
if not state.has_fp16_weights and state.CxB is None:
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
subA = None
C32A, SA = F.transform(CA, 'col32')
# 2. Quantize B
if state.has_fp16_weights:
has_grad = (True if (getattr(B, 'grad', None) is not None) else False)
is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1)
if is_transposed: B = B.contiguous()
if (state.is_training and not has_grad) or state.CxB is None:
state.reset_grads()
CB, state.CBt, state.SCB, state.SCBt, coo_tensorB = F.double_quant(B)
state.CxB, state.SB = F.transform(CB, to_order=formatB)
else:
has_grad = False
shapeB = state.SB[0]
if len(input_shape) == 3:
output_shape = (input_shape[0], input_shape[1], shapeB[0])
else:
output_shape = (input_shape[0], shapeB[0])
# 3. Matmul
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
output = F.mm_dequant(out32, Sout32, SCA, state.SCB)
# 4. Mixed-precision decomposition matmul
if state.threshold > 0.0 and coo_tensorA is not None and subA is not None:
output += torch.matmul(subA, state.subB)
# 5. Save state
ctx.state = state
ctx.formatB = formatB
ctx.grad_shape = input_shape
ctx.req_grads = [requires_gradA, requires_gradB]
if requires_gradA or requires_gradB:
ctx.tensors = (CAt, subA)
ctx.tensor_states = (SCAt, state.idx)
else:
ctx.tensors = [None, None]
ctx.tensor_states = (None, None)
ctx.save_for_backward(None, None)
#clone_func = torch.clone if len(output_shape) == 3 else lambda x : x
clone_func = torch.clone
return clone_func(output.view(output_shape))
@staticmethod
def backward(ctx, grad_output):
req_gradA, req_gradB = ctx.req_grads
CAt, subA = ctx.tensors
SCAt, idx = ctx.tensor_states
formatB = ctx.formatB
state = ctx.state
assert state.has_fp16_weights, 'Backprop only supported for fp16 weights.'
if len(grad_output.shape) == 3:
grad_output = grad_output.view(-1, grad_output.shape[-1]).contiguous()
grad_A = grad_B = None
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output)
if req_gradB:
CxAt, SAt = F.transform(CAt, formatB, transpose=True)
C32grad, Sgrad = F.transform(Cgradt, 'col32', transpose=True)
gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt)
grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt)
if state.threshold > 0.0 and subA is not None:
grad_B[:, idx] += torch.matmul(grad_output.t(), subA)
if req_gradA:
C32grad, Sgrad = F.transform(Cgrad, 'col32')
if state.CxBt is None:
state.CxBt, state.SBt = F.transform(state.CBt, to_order=formatB, transpose=True)
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape)
return grad_A, grad_B, None, None, None, None, None
matmul = MatMul8bitLt.apply
def matmul(A : tensor, B : tensor, out : tensor=None, state : MatmulLtState = None, threshold=0.0):
state = state or MatmulLtState()
if threshold > 0.0:
state.threshold = threshold
return MatMul8bitLt.apply(A, B, out, state)
|