1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from bitsandbytes.optim.optimizer import Optimizer1State
class Adagrad(Optimizer1State):
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10,
optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError('Initial accumulator value != 0.0 not supported!')
if lr_decay != 0.0:
raise ValueError('Lr Decay != 0.0 not supported!')
super(Adagrad, self).__init__('adagrad', params, lr, (0.0, 0.0), eps,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
class Adagrad8bit(Optimizer1State):
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10,
optim_bits=8, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError('Initial accumulator value != 0.0 not supported!')
if lr_decay != 0.0:
raise ValueError('Lr Decay != 0.0 not supported!')
assert block_wise
super(Adagrad8bit, self).__init__('adagrad', params, lr, (0.0, 0.0), eps,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
class Adagrad32bit(Optimizer1State):
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10,
optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError('Initial accumulator value != 0.0 not supported!')
if lr_decay != 0.0:
raise ValueError('Lr Decay != 0.0 not supported!')
super(Adagrad32bit, self).__init__('adagrad', params, lr, (0.0, 0.0), eps,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
|