summaryrefslogtreecommitdiff
path: root/bitsandbytes/optim/optimizer.py
blob: 5a5bb1e7b53e4db65fabdf574e48cbe4c8a78bcd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# Copyright (c) Facebook, Inc. and its affiliates. 
#   
# This source code is licensed under the MIT license found in the 
# LICENSE file in the root directory of this source tree.
import torch
import bitsandbytes.functional as F

from copy import deepcopy
from itertools import chain
from collections import defaultdict, abc as container_abcs

class MockArgs(object):
    def __init__(self, initial_data):
        for key in initial_data:
            setattr(self, key, initial_data[key])


class GlobalOptimManager(object):
    _instance = None

    def __init__(self):
        raise RuntimeError('Call get_instance() instead')

    def initialize(self):
        self.pid2config = {}
        self.index2config = {}
        self.optimizer = None
        self.uses_config_override = False
        self.module_weight_config_triple = []

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
            cls._instance = cls.__new__(cls)
            cls._instance.initialize()
        return cls._instance

    def register_parameters(self, params):
        param_groups = list(params)
        if not isinstance(param_groups[0], dict):
            param_groups = [{'params': param_groups}]

        for group_index, group in enumerate(param_groups):
            for p_index, p in enumerate(group['params']):
                if id(p) in self.pid2config:
                    self.index2config[(group_index, p_index)] = self.pid2config[id(p)]

    def override_config(self, parameters, key=None, value=None, key_value_dict=None):
        '''
        Overrides initial optimizer config for specific parameters.

        The key-values of the optimizer config for the input parameters are overidden
        This can be both, optimizer parameters like "betas", or "lr" or it can be
        8-bit specific paramters like "optim_bits", "percentile_clipping".

        Parameters
        ----------
        parameters : torch.Tensor or list(torch.Tensors)
            The input parameters.
        key : str
            The hyperparamter to override.
        value : object
            The value for the hyperparamters.
        key_value_dict : dict
            A dictionary with multiple key-values to override.
        '''
        self.uses_config_override = True
        if isinstance(parameters, torch.nn.Parameter):
            parameters = [parameters]
        if isinstance(parameters, torch.Tensor):
            parameters = [parameters]
        if key is not None and value is not None:
            assert key_value_dict is None
            key_value_dict = {key: value}

        if key_value_dict is not None:
            for p in parameters:
                if id(p) in self.pid2config:self.pid2config[id(p)].update(key_value_dict)
                else: self.pid2config[id(p)] = key_value_dict

    def register_module_override(self, module, param_name, config):
        self.module_weight_config_triple.append((module, param_name, config))



class Optimizer8bit(torch.optim.Optimizer):

    def __init__(self, params, defaults, optim_bits=32):
        super(Optimizer8bit, self).__init__(params, defaults)
        self.initialized = False
        self.name2qmap = {}

        self.mng = GlobalOptimManager.get_instance()
        self.non_castable_tensor_keys = set(
                ['qmap1', 'qmap2',
                 'max1', 'max2',
                 'new_max1', 'new_max2',
                 'state1', 'state2',
                 'gnorm_vec', 'absmax1', 'absmax2',
                 'unorm_vec'])

        if optim_bits == 8: self.fill_qmap()

    def fill_qmap(self):
        self.name2qmap['dynamic'] = F.create_dynamic_map(signed=True)
        self.name2qmap['udynamic'] = F.create_dynamic_map(signed=False)

    def __setstate__(self, state):
        super(Optimizer8bit, self).__setstate__(state)


    def load_state_dict(self, state_dict):
        r"""Loads the optimizer state.

        Args:
            state_dict (dict): optimizer state. Should be an object returned
                from a call to :meth:`state_dict`.
        """
        # deepcopy, to be consistent with module API
        state_dict = deepcopy(state_dict)
        # Validate the state_dict
        groups = self.param_groups
        saved_groups = state_dict['param_groups']

        if len(groups) != len(saved_groups):
            raise ValueError("loaded state dict has a different number of "
                             "parameter groups")
        param_lens = (len(g['params']) for g in groups)
        saved_lens = (len(g['params']) for g in saved_groups)
        if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
            raise ValueError("loaded state dict contains a parameter group "
                             "that doesn't match the size of optimizer's group")

        # Update the state
        id_map = {old_id: p for old_id, p in
                  zip(chain.from_iterable((g['params'] for g in saved_groups)),
                      chain.from_iterable((g['params'] for g in groups)))}

        def cast(param, value):
            r"""Make a deep copy of value, casting all tensors to device of param."""
            if isinstance(value, torch.Tensor):
                # Floating-point types are a bit special here. They are the only ones
                # that are assumed to always match the type of params.
                if param.is_floating_point() and value.dtype != torch.uint8:
                    value = value.to(param.dtype)
                return value
            elif isinstance(value, dict):
                for k, v in value.items():
                    if k in self.non_castable_tensor_keys:
                        value[k] = v.to(param.device)
                    else:
                        value[k] = cast(param, v)

                return value
            elif isinstance(value, container_abcs.Iterable):
                return type(value)(cast(param, v) for v in value)
            else:
                return value

        # Copy state assigned to params (and cast tensors to appropriate types).
        # State that is not assigned to params is copied as is (needed for
        # backward compatibility).
        state = defaultdict(dict)
        for k, v in state_dict['state'].items():
            if k in id_map:
                param = id_map[k]
                state[param] = cast(param, v)
            else:
                state[k] = v

        # Update parameter groups, setting their 'params' value
        def update_group(group, new_group):
            new_group['params'] = group['params']
            return new_group
        param_groups = [
            update_group(g, ng) for g, ng in zip(groups, saved_groups)]
        self.__setstate__({'state': state, 'param_groups': param_groups})

    def to_gpu(self):
        for gindex, group in enumerate(self.param_groups):
            for pindex, p in enumerate(group['params']):
                if p in self.state:
                    values = self.state[p]
                    for k, v in values.items():
                        if isinstance(v, torch.Tensor):
                            self.state[p][k] = v.to(p.device)

    def check_overrides(self):
        for module, attr, config in self.mng.module_weight_config_triple:
            pmodule = getattr(module, attr)
            assert pmodule is not None
            assert isinstance(pmodule, torch.Tensor) or isinstance(pmodule, torch.Parameter)
            found = False
            for gindex, group in enumerate(self.param_groups):
                if found: break
                for pindex, p in enumerate(group['params']):
                    if found: break
                    if id(p) == id(pmodule):
                        # found the matching parameter
                        # init override
                        self.mng.pid2config[id(p)] = config
                        self.mng.index2config[(gindex, pindex)] = self.mng.pid2config[id(p)]
                        found = True

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        overflows = []

        if not self.initialized:
            self.check_overrides()
            self.to_gpu() # needed for fairseq pure fp16 training
            self.initialized = True

        for gindex, group in enumerate(self.param_groups):
            for pindex, p in enumerate(group['params']):
                if p.grad is None:
                    continue
                state = self.state[p]
                if len(state) == 0:
                    self.init_state(group, p, gindex, pindex)

                self.update_step(group, p, gindex, pindex)

        return loss

    def get_config(self, gindex, pindex, group):
        config = {}
        config['betas'] = group['betas']
        config['eps'] = group['eps']
        config['weight_decay'] = group['weight_decay']
        config['lr'] = group['lr']
        config['optim_bits'] = self.args.optim_bits
        config['min_8bit_size'] = self.args.min_8bit_size
        config['percentile_clipping'] = self.args.percentile_clipping
        config['block_wise'] = self.args.block_wise
        config['max_unorm'] = self.args.max_unorm
        config['skip_zeros'] = self.args.skip_zeros

        if (gindex, pindex) in self.mng.index2config:
            config.update(self.mng.index2config[(gindex, pindex)])
        return config

    def init_state(self, group, p, gindex, pindex):
        raise NotImplementedError(f'init_state method needs to be overidden')

    def update_step(self, group, p, gindex, pindex):
        raise NotImplementedError(f'The update_step method needs to be overidden')

class Optimizer2State(Optimizer8bit):
    def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
            weight_decay=0.0, optim_bits=32, args=None,
            min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0,
            skip_zeros=False):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if isinstance(betas, str):
            # format: '(beta1, beta2)'
            betas = betas.replace('(', '').replace(')', '').strip().split(',')
            betas = [float(b) for b in betas]
        for i in range(len(betas)):
            if not 0.0 <= betas[i] < 1.0:
                raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}")
        if not 0.0 <= weight_decay:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
        defaults = dict(lr=lr, betas=betas, eps=eps,
                        weight_decay=weight_decay)
        super(Optimizer2State, self).__init__(params, defaults, optim_bits)

        if args is None:
            args = {}
            args['optim_bits'] = optim_bits
            args['percentile_clipping'] = 100
            args['min_8bit_size'] = min_8bit_size
            args['percentile_clipping'] = percentile_clipping
            args['block_wise'] = block_wise
            args['max_unorm'] = max_unorm
            args['skip_zeros'] = skip_zeros

            self.args = MockArgs(args)
        else:
            self.args = args

        self.optimizer_name = optimizer_name

    @torch.no_grad()
    def init_state(self, group, p, gindex, pindex):
        config = self.get_config(gindex, pindex, group)

        if config['optim_bits'] == 32:
            dtype = torch.float32
        elif config['optim_bits'] == 8:
            dtype = torch.uint8
        else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}')

        if p.numel() < config['min_8bit_size']: dtype = torch.float32

        state = self.state[p]
        state['step'] = 0

        if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096):
            state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
            state['state2'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
        elif dtype == torch.uint8:
            if state['step'] == 0:
                if 'dynamic' not in self.name2qmap: self.fill_qmap()
                self.name2qmap['dynamic'] = self.name2qmap['dynamic'].to(p.device)
                self.name2qmap['udynamic'] = self.name2qmap['udynamic'].to(p.device)

            state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
            state['qmap1'] = self.name2qmap['dynamic']

            state['state2'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
            state['qmap2'] = self.name2qmap['udynamic']

            if config['block_wise']:
                n = p.numel()
                blocks = n//2048
                blocks += 1 if n % 2048 > 0 else 0

                state['absmax1'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
                state['absmax2'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
            else:
                state['max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
                state['new_max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
                state['max2'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
                state['new_max2'] = torch.zeros((1,), dtype=torch.float32, device=p.device)

        if config['percentile_clipping'] < 100:
            state['gnorm_vec'] = torch.zeros((100,), device=p.device)

        if config['max_unorm'] > 0.0:
            state['unorm_vec'] = torch.zeros((1,), device=p.device)

    @torch.no_grad()
    def update_step(self, group, p, gindex, pindex):
        state = self.state[p]
        grad = p.grad

        config = self.get_config(gindex, pindex, group)

        state['step'] += 1
        step = state['step']

        if config['percentile_clipping'] < 100:
            current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(grad, state['gnorm_vec'], step, config['percentile_clipping'])
        else:
            gnorm_scale = 1.0

        if state['state1'].dtype == torch.float:
            F.optimizer_update_32bit(self.optimizer_name, grad, p, state['state1'], config['betas'][0], config['eps'], step, config['lr'],
                    state['state2'], config['betas'][1], config['weight_decay'], gnorm_scale,
                    state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'], skip_zeros=config['skip_zeros'])

        elif state['state1'].dtype == torch.uint8 and not config['block_wise']:
            F.optimizer_update_8bit(self.optimizer_name, grad, p, state['state1'], state['state2'], config['betas'][0], config['betas'][1],
                          config['eps'],  step, config['lr'],
                          state['qmap1'], state['qmap2'], state['max1'], state['max2'], state['new_max1'], state['new_max2'],
                          config['weight_decay'], gnorm_scale=gnorm_scale,
                          unorm_vec=state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'])

            # swap maxes
            state['max1'], state['new_max1'] = state['new_max1'], state['max1']
            state['max2'], state['new_max2'] = state['new_max2'], state['max2']
        elif state['state1'].dtype == torch.uint8 and config['block_wise']:
            F.optimizer_update_8bit_blockwise(self.optimizer_name, grad, p, state['state1'], state['state2'], config['betas'][0], config['betas'][1],
                          config['eps'],  step, config['lr'],
                          state['qmap1'], state['qmap2'], state['absmax1'], state['absmax2'],
                          config['weight_decay'], gnorm_scale=gnorm_scale, skip_zeros=config['skip_zeros'])


class Optimizer1State(Optimizer8bit):
    def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8,
            weight_decay=0.0, optim_bits=32, args=None,
            min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0,
            skip_zeros=False):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        for i in range(len(betas)):
            if not 0.0 <= betas[i] < 1.0:
                raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}")
        if not 0.0 <= weight_decay:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
        defaults = dict(lr=lr, betas=betas, eps=eps,
                        weight_decay=weight_decay)
        super(Optimizer1State, self).__init__(params, defaults, optim_bits)

        if args is None:
            args = {}
            args['optim_bits'] = optim_bits
            args['percentile_clipping'] = 100
            args['min_8bit_size'] = min_8bit_size
            args['percentile_clipping'] = percentile_clipping
            args['block_wise'] = block_wise
            args['max_unorm'] = max_unorm
            args['skip_zeros'] = skip_zeros

            self.args = MockArgs(args)
        else:
            self.args = args

        self.optimizer_name = optimizer_name

    @torch.no_grad()
    def init_state(self, group, p, gindex, pindex):
        config = self.get_config(gindex, pindex, group)

        if config['optim_bits'] == 32:
            dtype = torch.float32
        elif config['optim_bits'] == 8:
            dtype = torch.uint8
        else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}')

        if p.numel() < config['min_8bit_size']: dtype = torch.float32

        state = self.state[p]
        state['step'] = 0

        if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096):
            state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
        elif dtype == torch.uint8:
            if state['step'] == 0:
                if 'dynamic' not in self.name2qmap: self.fill_qmap()
                self.name2qmap['dynamic'] = self.name2qmap['dynamic'].to(p.device)

            state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
            state['qmap1'] = self.name2qmap['dynamic']

            if config['block_wise']:
                n = p.numel()
                blocks = n//2048
                blocks += 1 if n % 2048 > 0 else 0

                state['absmax1'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
            else:
                state['max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
                state['new_max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)

        if config['percentile_clipping'] < 100:
            state['gnorm_vec'] = torch.zeros((100,), device=p.device)

        if config['max_unorm'] > 0.0:
            state['unorm_vec'] = torch.zeros((1,), device=p.device)


    @torch.no_grad()
    def update_step(self, group, p, gindex, pindex):
        state = self.state[p]
        grad = p.grad

        config = self.get_config(gindex, pindex, group)

        state['step'] += 1
        step = state['step']

        if config['percentile_clipping'] < 100:
            current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(grad, state['gnorm_vec'], step, config['percentile_clipping'])
        else:
            gnorm_scale = 1.0

        if state['state1'].dtype == torch.float:
            F.optimizer_update_32bit(self.optimizer_name, grad, p, state['state1'], config['betas'][0], config['eps'], step, config['lr'],
                    None, 0.0, config['weight_decay'], gnorm_scale,
                    state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'],
                    skip_zeros=config['skip_zeros'])

        elif state['state1'].dtype == torch.uint8 and not config['block_wise']:
            F.optimizer_update_8bit(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1],
                    config['eps'], step, config['lr'], state['qmap1'], None, state['max1'], None, state['new_max1'], None,
                    config['weight_decay'], gnorm_scale,
                    state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'])

            state['max1'], state['new_max1'] = state['new_max1'], state['max1']
        elif state['state1'].dtype == torch.uint8 and config['block_wise']:
            F.optimizer_update_8bit_blockwise(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1],
                          config['eps'],  step, config['lr'],
                          state['qmap1'], None, state['absmax1'], None,
                          config['weight_decay'], gnorm_scale=gnorm_scale, skip_zeros=config['skip_zeros'])