1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
#ifndef ops_H
#define ops_H
#include <stdio.h>
#include <iostream>
#include <unistd.h>
#include <assert.h>
#include <cuda_runtime_api.h>
#include <cuda_fp16.h>
#include <cublas_v2.h>
#include <cublasLt.h>
#include <cusparse.h>
#include <vector>
#include <functional>
#define CUDA_CHECK_RETURN(value) { \
cudaError_t _m_cudaStat = value; \
if (_m_cudaStat != cudaSuccess) { \
fprintf(stderr, "Error %s at line %d in file %s\n", \
cudaGetErrorString(_m_cudaStat), __LINE__, __FILE__); \
exit(1); \
} }
#define THREADS_PER_BLOCKS (512)
#define CHECK_CUSPARSE(value) { \
cusparseStatus_t _m_cudaStat = value; \
if (_m_cudaStat != CUSPARSE_STATUS_SUCCESS) { \
fprintf(stderr, "Error %s at line %d in file %s\n", \
cusparseGetErrorString(_m_cudaStat), __LINE__, __FILE__); \
exit(1); \
} }
#define THREADS_PER_BLOCKS (512)
inline void checkCudaStatus(cudaError_t status) {
if (status != cudaSuccess) {
printf("cuda API failed with status %d: %s\n", status, cudaGetErrorString(status));
throw std::logic_error("cuda API failed");
}
}
inline int checkCublasStatus(cublasStatus_t status) {
if (status != CUBLAS_STATUS_SUCCESS) {
printf("cuBLAS API failed with status %d\n", status);
//throw std::logic_error("cuBLAS API failed");
return 1;
}
return 0;
}
typedef enum Operations_t
{
ksmul = 0,
} Operations_t;
typedef enum Optimizer_t
{
ADAM = 0,
MOMENTUM = 1,
RMSPROP = 2,
LARS = 3,
ADAGRAD = 4,
} Optimizer_t;
typedef enum Transform_t
{
ROW = 0,
COL = 1,
COL32 = 2,
COL_TURING = 3,
COL_AMPERE = 4,
} Transform_t;
class Context
{
public:
cublasHandle_t m_handle;
Context()
{
cublasHandle_t handle;
cublasCreate_v2(&handle);
m_handle = handle;
}
};
class ContextLt
{
public:
cublasLtHandle_t m_handle;
ContextLt()
{
cublasLtHandle_t handle;
cublasLtCreate(&handle);
m_handle = handle;
}
};
class ContextCusparse
{
public:
cusparseHandle_t m_handle;
ContextCusparse()
{
cusparseHandle_t handle;
cusparseCreate(&handle);
m_handle = handle;
}
};
template <typename T> void estimateQuantiles(T *A, float *code, float offset, int n);
void quantize(float *code, float *A, unsigned char *out, int n);
void dequantize(float *code, unsigned char *A, float *out, int n);
template <typename T, int STOCHASTIC> void quantizeBlockwise(float * code, T *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template<typename T> void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int block_size, const int n);
template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
float* state1, float* state2, float *unorm, float max_unorm, float param_norm,
float beta1, float beta2, float eps, float weight_decay,
int step, float lr, const float gnorm_scale, bool skip_zeros, int n);
template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g, unsigned char* state1, unsigned char* state2,
float *unorm, float max_unorm, float param_norm,
float beta1, float beta2,
float eps, int step, float lr,
float* quantiles1, float* quantiles2,
float* max1, float* max2, float* new_max1, float* new_max2,
float weight_decay,
const float gnorm_scale, int n);
template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g,
unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,
float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale,
bool skip_zeros, int n);
template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step, const int n);
void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n);
void gemmex(Context * context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc);
void strided_gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc,
long long int strideA, long long int strideB, long long int strideC, int batchCount);
template <int FORMATB, int DTYPE_OUT, int SCALE_ROWS> int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc);
template <typename T, int SRC, int TARGET, bool transpose, int DTYPE> void transform(cublasLtHandle_t ltHandle, T *A, T *out, int dim1, int dim2);
void cutlass_igemm(bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc);
void dequant_mm_int32_fp16(int *A, float *rowStats, float *colStats, half *out, float* newRowStats, float* newcolStats, half* bias, int numRows, int numCols);
void getColRowStats(half * A, float *rowStats, float *colStats, int *nnz_count_row, float nnz_threshold, int rows, int cols);
void doubleRowColQuant(half * A, float *rowStats, float *colStats, char *out_col_normed, char *out_row_normed,
int *rowidx, int *colidx, half *val, int *nnz_block_ptr, float threshold, int rows, int cols);
template <int FORMAT, int TRANSPOSE> void transformRowToFormat(char * A, char *out, int rows, int cols);
void spmm_coo(cusparseHandle_t handle, int *A_rowidx, int *A_colidx, half *A_vals, int A_nnz, int A_rows, int A_cols, int B_cols, int ldb, half *B, int ldc, half* C, bool transposed_B);
template <typename T, int BITS> void spmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, T *B, half *out, float *dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB);
template <int FORMAT> void extractOutliers(char * A, int *idx, char *out, int idx_size, int rows, int cols);
#endif
|