summaryrefslogtreecommitdiff
path: root/tests/test_autograd.py
blob: d2b5d59ca2028d3682322cf4cb9f6360dc2d731e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import pytest

import torch
import bitsandbytes as bnb

from itertools import product

n = 1
k = 25
dim1 = torch.randint(16,64, size=(n,)).tolist()
dim2 = torch.randint(32,96, size=(n,)).tolist()
dim3 = torch.randint(32,96, size=(n,)).tolist()
dim4 = torch.randint(32,96, size=(n,)).tolist()
funcs = [(torch.bmm, bnb.bmm_cublas), (torch.matmul, bnb.matmul_cublas)]
str_funcs = ['bmm', 'matmul']
req_grad = [(False, False), (True, False), (True, True), (False, True)]
req_grad_str = ['FF', 'TF', 'TT', 'FT']
transpose = [(False, False), (False, True), (True, True), (True, False)]
str_transpose = ['FF', 'FT', 'TT', 'TF']
dtype = [torch.float32, torch.float16]
values = list(product(dim1,dim2,dim3,dim4,funcs, dtype, req_grad, transpose))
str_values = list(product(dim1,dim2,dim3,dim4,str_funcs, dtype, req_grad_str, str_transpose))
names = ['dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}'.format(*vals) for vals in str_values]
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose", values, ids=names)
def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
    dim2 = dim2 - (dim2 % 16)
    dim3 = dim3 - (dim3 % 16)
    dim4 = dim4 - (dim4 % 16)
    for i in range(k):

        # normal multiply
        if funcs[0] in [torch.mm, torch.matmul]:
            dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
            dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
            A = torch.randn(size=dimA, device='cuda', requires_grad=req_grad[0])
            B = torch.randn(size=dimB, device='cuda', requires_grad=req_grad[1])
            target = torch.randn(size=(dim2, dim4), device='cuda', requires_grad=req_grad[1])
            torch.nn.init.xavier_uniform_(B)

            if not transpose[0] and not transpose[1]:
                out_torch = funcs[0](A, B)
                out_bnb = funcs[1](A, B)
            elif not transpose[0] and transpose[1]:
                out_torch = funcs[0](A, B.t())
                out_bnb = funcs[1](A, B.t())
            elif transpose[0] and not transpose[1]:
                out_torch = funcs[0](A.t(), B)
                out_bnb = funcs[1](A.t(), B)
            elif transpose[0] and transpose[1]:
                out_torch = funcs[0](A.t(), B.t())
                out_bnb = funcs[1](A.t(), B.t())

            n = out_bnb.numel()
            idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
            assert (idx==0).sum().item() < n*0.0175
            idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
            assert (idx==0).sum().item() < n*0.001

            if any(req_grad):
                out_bnb.data.copy_(out_torch)
                torch.cuda.synchronize()
                loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                loss_bnb.backward()
                gradA1 = A.grad
                gradB1 = B.grad
                A.grad = None
                B.grad = None

                loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
                loss_torch.backward()
                gradA2 = A.grad
                gradB2 = B.grad
                A.grad = None
                B.grad = None

            if req_grad[0]:
                torch.testing.assert_allclose(gradA1, gradA2, atol=0.015, rtol=0.1)
            if req_grad[1]:
                n = gradB1.numel()
                idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
                assert (idx==0).sum().item() < n*0.1
                idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
                assert (idx==0).sum().item() < n*0.02
                torch.testing.assert_allclose(gradB1, gradB2, atol=0.18, rtol=0.3)

        # batched matrix multiply
        if funcs[0] in [torch.bmm, torch.matmul]:
            A = torch.randn(size=(dim1, dim2, dim3), device='cuda', requires_grad=req_grad[0])
            B = torch.randn(size=(dim1, dim3, dim4), device='cuda', requires_grad=req_grad[1])
            target = torch.randn(size=(dim1, dim2, dim4), device='cuda', requires_grad=req_grad[1])
            torch.nn.init.xavier_uniform_(B)

            out_torch = funcs[0](A, B)
            out_bnb = funcs[1](A, B)

            n = out_bnb.numel()
            idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
            assert (idx==0).sum().item() < n*0.01
            torch.testing.assert_allclose(out_bnb, out_torch, atol=0.027, rtol=0.2)

            if any(req_grad):
                out_bnb.data.copy_(out_torch)
                torch.cuda.synchronize()
                loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                loss_bnb.backward()
                gradA1 = A.grad
                gradB1 = B.grad
                A.grad = None
                B.grad = None

                loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
                loss_torch.backward()
                gradA2 = A.grad
                gradB2 = B.grad
                A.grad = None
                B.grad = None

            if req_grad[0]:
                torch.testing.assert_allclose(gradA1, gradA2, atol=0.015, rtol=0.1)
            if req_grad[1]:
                n = gradB1.numel()
                idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
                assert (idx==0).sum().item() < n*0.1
                idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
                assert (idx==0).sum().item() < n*0.02

        if funcs[0] in [torch.matmul]:
            dim1 = dim1 - (dim1 % 16)
            A = torch.randn(size=(dim1, dim2, dim3), device='cuda', requires_grad=req_grad[0])
            dimB = (dim4, dim3) if transpose[1] else (dim3, dim4)
            B = torch.randn(size=dimB, device='cuda', requires_grad=req_grad[1])
            target = torch.randn(size=(dim1, dim2, dim4), device='cuda', requires_grad=req_grad[1])
            torch.nn.init.xavier_uniform_(B)

            if transpose[1]:
                out_torch = funcs[0](A, B.t())
                out_bnb = funcs[1](A, B.t())
            else:
                out_torch = funcs[0](A, B)
                out_bnb = funcs[1](A, B)

            n = out_bnb.numel()
            idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
            assert (idx==0).sum().item() < n*0.0175
            idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
            assert (idx==0).sum().item() < n*0.001

            if any(req_grad):
                out_bnb.data.copy_(out_torch)
                torch.cuda.synchronize()
                loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                loss_bnb.backward()
                gradA1 = A.grad
                gradB1 = B.grad
                A.grad = None
                B.grad = None

                loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
                loss_torch.backward()
                gradA2 = A.grad
                gradB2 = B.grad
                A.grad = None
                B.grad = None

            if req_grad[0]:
                torch.testing.assert_allclose(gradA1, gradA2, atol=0.015, rtol=0.1)
            if req_grad[1]:
                n = gradB1.numel()
                idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
                assert (idx==0).sum().item() < n*0.1
                idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
                assert (idx==0).sum().item() < n*0.02


n = 1
k = 3
dim1 = torch.randint(16,64, size=(n,)).tolist()
dim2 = torch.randint(32,96, size=(n,)).tolist()
dim3 = torch.randint(32,96, size=(n,)).tolist()
dim4 = torch.randint(32,96, size=(n,)).tolist()

#dim1 = (17,)
#dim2 = (7,)
#dim3 = (37,)
#dim4 = (23,)

decomp = [0.0, 6.0]
funcs = [(torch.matmul, bnb.matmul)]
str_funcs = ['matmul']
req_grad = [(False, False), (True, False), (True, True), (False, True)]
req_grad_str = ['FF', 'TF', 'TT', 'FT']
transpose = [(False, True), (False, False)]
str_transpose = ['NT', 'NN']
dtype = [torch.float16]
has_fp16_weights = [True, False]
values = list(product(dim1,dim2,dim3,dim4,funcs, dtype, req_grad, transpose, decomp, has_fp16_weights))
str_values = list(product(dim1,dim2,dim3,dim4,str_funcs, dtype, req_grad_str, str_transpose, decomp, has_fp16_weights))
names = ['dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}_decomp_{8}_has_fp16_weights_{9}'.format(*vals) for vals in str_values]
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights", values, ids=names)
def test_matmullt(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights):
    dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
    dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
    outlier_dim = torch.randint(0, dimA[1], size=(dimA[1]//8,), device='cuda')

    for i in range(k):

        # normal multiply
        if funcs[0] in [torch.mm, torch.matmul]:
            A = torch.randn(size=dimA, device='cuda', requires_grad=req_grad[0], dtype=dtype)
            if decomp == 6.0:
                with torch.no_grad():
                    A[:, outlier_dim] = 6.0
            B = torch.randn(size=dimB, device='cuda', requires_grad=req_grad[1], dtype=dtype)
            target = torch.randn(size=(dim2, dim4), device='cuda', requires_grad=req_grad[1], dtype=dtype)
            torch.nn.init.xavier_uniform_(B)
            B2 = B.clone()

            state = bnb.MatmulLtState()
            state.threshold = decomp
            state.has_fp16_weights = has_fp16_weights
            if not has_fp16_weights:
                if not transpose[0] and not transpose[1]: B2 = B2.t().contiguous()
                state.CB, CBt, state.SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B2)
                B2 = state.CB

            if not transpose[0] and transpose[1]:
                out_torch = funcs[0](A, B.t())
                out_bnb = funcs[1](A, B2, state=state)
            elif not transpose[0] and not transpose[1]:
                out_torch = funcs[0](A, B)
                out_bnb = funcs[1](A, B2.t(), state=state)

            n = out_bnb.numel()
            err = torch.abs(out_bnb-out_torch).mean().item()
            #print(f'abs error {err:.4f}')
            idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
            assert (idx==0).sum().item() < n*0.0175
            idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
            assert (idx==0).sum().item() < n*0.001

            if has_fp16_weights:
                if any(req_grad):
                    out_bnb.data.copy_(out_torch)
                    torch.cuda.synchronize()
                    loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                    loss_bnb.backward()
                    gradA1 = A.grad
                    gradB1 = B.grad
                    A.grad = None
                    B.grad = None

                    loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
                    loss_torch.backward()
                    gradA2 = A.grad
                    gradB2 = B.grad
                    A.grad = None
                    B.grad = None

                if req_grad[0]:
                    torch.testing.assert_allclose(gradA1, gradA2, atol=0.015, rtol=0.1)
                if req_grad[1]:
                    n = gradB1.numel()
                    assert torch.abs(gradB1).sum() > 0.0
                    assert torch.abs(gradB2).sum() > 0.0
                    idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
                    assert (idx==0).sum().item() < n*0.1
                    idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
                    assert (idx==0).sum().item() < n*0.02
                    torch.testing.assert_allclose(gradB1, gradB2, atol=0.18, rtol=0.3)