1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
|
from itertools import product
import pytest
import torch
from torch import nn
import bitsandbytes as bnb
class MockArgs(object):
def __init__(self, initial_data):
for key in initial_data:
setattr(self, key, initial_data[key])
class MLP8bit(torch.nn.Module):
def __init__(self, dim1, dim2, has_fp16_weights=True, threshold=0.0):
super(MLP8bit, self).__init__()
self.fc1 = bnb.nn.Linear8bitLt(
dim1, dim2, has_fp16_weights=has_fp16_weights, threshold=threshold
)
self.fc2 = bnb.nn.Linear8bitLt(
dim2, dim1, has_fp16_weights=has_fp16_weights, threshold=threshold
)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
def get_args():
args = MockArgs([])
args.quant_type = "vector"
args.use_8bit_training = "full"
args.clip_freq = 9999
return args
def assert_all_approx_close(a, b, atol=1e-8, rtol=1e-5, count=10):
idx = torch.isclose(a, b, rtol, atol)
sumval = (idx == 0).sum().item()
if sumval > count:
print(f"Too many values not close: assert {sumval} < {count}")
torch.testing.assert_allclose(a, b, rtol, atol)
class LinearFunction(torch.autograd.Function):
@staticmethod
def get_8bit_linear_trimmed(x, stochastic=False, trim_value=3.0):
round_func = (
LinearFunction.round_stoachastic if stochastic else torch.round
)
norm = math.sqrt(math.pi) / math.sqrt(2.0)
# std = torch.abs(x).mean()*norm
std = torch.std(x)
max1 = std * trim_value
x = x / max1 * 127
x = round_func(x)
x[x > 127] = 127
x[x < -127] = -127
x = x / 127 * max1
return x
def quant(x, quant_type, dim=1):
if quant_type == "linear":
max1 = torch.abs(x).max().float()
xq = torch.round(x / max1 * 127).to(torch.int8)
return xq, max1
elif quant_type == "vector":
max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
xq = torch.round(x / max1 * 127).to(torch.int8)
return xq, max1
elif quant_type == "min-max":
maxA = torch.amax(x, dim=dim, keepdim=True).float()
minA = torch.amin(x, dim=dim, keepdim=True).float()
scale = (maxA - minA) / 2.0
xq = torch.round(127 * (x - minA - scale) / scale).to(torch.int8)
return xq, (minA.float(), scale.float())
else:
return None
def dequant(xq, S1, S2, dtype, quant_type):
if quant_type == "linear":
norm = S1 * S2 / (127 * 127)
# double cast needed to prevent overflows
return (xq.float() * norm).to(dtype)
elif quant_type == "vector":
x = xq.float()
if len(xq.shape) == 2 and len(S1.shape) == 3:
S1 = S1.squeeze(0)
if len(xq.shape) == 2 and len(S2.shape) == 3:
S2 = S2.squeeze(0)
# print(x.shape, S1.shape, S2.shape)
if len(S1.shape) == 2:
x *= S1.t() / 127
else:
x *= S1 / 127
x *= S2 / 127
return x.to(dtype)
else:
return None
def dequant_min_max(xq, A, B, SA, SB, dtype):
offset = B.float().t().sum(0) * (SA[0] + SA[1])
x = xq.float()
if len(xq.shape) == 2 and len(SB.shape) == 3:
SB = SB.squeeze(0)
if len(xq.shape) == 2 and len(SA.shape) == 3:
SA = SA.squeeze(0)
if len(SB.shape) == 2:
x *= SB.t() / 127
else:
x *= SB / 127
x *= SA[1] / 127
x += offset
return x.to(dtype)
def get_8bit_linear(x, stochastic=False):
round_func = (
LinearFunction.round_stoachastic if stochastic else torch.round
)
max1 = torch.abs(x).max()
x = x / max1 * 127
x = round_func(x) / 127 * max1
# x = torch.round(x)/128*max1
return x
@staticmethod
def get_8bit_vector_wise(x, dim, stochastic=False):
round_func = (
LinearFunction.round_stoachastic if stochastic else torch.round
)
max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
max1[max1 == 0] = 1.0
x = (x * 127) / max1
x = round_func(x) / 127 * max1
return x
@staticmethod
def round_stoachastic(x):
sign = torch.sign(x)
absx = torch.abs(x)
decimal = absx - torch.floor(absx)
rdm = torch.rand_like(decimal)
return sign * (torch.floor(absx) + (rdm < decimal).to(x.dtype))
@staticmethod
def fake_8bit_storage(w, exponent_bits):
code = bnb.functional.create_dynamic_map(n=exponent_bits).to(w.device)
absmax, C = bnb.functional.quantize_blockwise(w.data, code=code)
out = bnb.functional.dequantize_blockwise(absmax, C, code)
out = out.half()
w.copy_(out)
return out
@staticmethod
def fake_8bit_storage_quantile(w, args):
code = bnb.functional.estimate_quantiles(w.data, offset=args.offset)
# C = bnb.functional.quantize_no_absmax(code, w)
# out = bnb.functional.dequantize_no_absmax(code, C, out=w.data)
# print(out)
# out = out.half()
code /= torch.max(torch.abs(code))
absmax, C = bnb.functional.quantize_blockwise(w.data, code=code)
out = bnb.functional.dequantize_blockwise(absmax, C, code)
out = out.half()
w.copy_(out)
return out
@staticmethod
def fake_8bit_storage_stoachstic(w):
rand = torch.rand(1024, device=w.device)
absmax, C = bnb.functional.quantize_blockwise(w.data, rand=rand)
out = bnb.functional.dequantize_blockwise(absmax, C)
out = out.half()
w.copy_(out)
return out
@staticmethod
def fake_8bit_storage_with_max(w, topk=8):
blocked_w = einops.rearrange(w.flatten(), "(h b) -> h b", b=256)
max_val, idx = torch.sort(torch.abs(blocked_w), dim=1, descending=True)
idx = idx[:, :topk]
max_val = max_val[:, :topk]
mask = torch.zeros_like(blocked_w)
mask.scatter_(dim=1, index=idx, src=torch.ones_like(max_val))
mask = mask.bool()
# 1. zero out max values
# 2. quantize + dequantize
# 3. write back max values
# 4. copy matrix back to weight
values = blocked_w[mask]
blocked_w[mask] = 0
code = bnb.functional.create_dynamic_map()
code = code.to(w.device)
absmax, C = bnb.functional.quantize_blockwise(blocked_w.data)
bnb.functional.dequantize_blockwise(absmax, C, out=blocked_w)
blocked_w[mask] = values
unblocked_w = blocked_w.flatten().view(w.shape)
w.copy_(unblocked_w)
return unblocked_w
@staticmethod
def forward(ctx, x, weight, bias=None, args=None):
if args.use_8bit_training != "off":
weight8, S1 = LinearFunction.quant(weight, args.quant_type, dim=1)
x8, S2 = LinearFunction.quant(x, args.quant_type, dim=2)
outputq = bnb.functional.igemm(x8, weight8.t())
output = LinearFunction.dequant(
outputq, S1, S2, x.dtype, args.quant_type
)
# if torch.rand(1) < 0.01:
# output32 = torch.matmul(x, weight.t())
# err = torch.abs(output-output32).float()
# relerr = err/(torch.abs(output32).float()+1e-8)
# print(f'{err.mean().item():.4f}, {relerr.mean().item():.4f}', args.quant_type, 'forward', proxy)
else:
# output = torch.matmul(x, weight.t())
output = torch.einsum("bsi,oi->bso", x, weight)
ctx.save_for_backward(x, weight, bias)
ctx.args = args
if bias is not None:
output += bias.unsqueeze(0).expand_as(output)
return output
@staticmethod
def backward(ctx, grad_output):
x, weight, bias = ctx.saved_tensors
args = ctx.args
stochastic = False
grad_input = grad_weight = grad_bias = None
if bias is not None and ctx.needs_input_grad[2]:
grad_bias = grad_output.sum(0)
# weight and x are already 8bit
# -> transform grad_output to 8-bit
if args.use_8bit_training == "forward+wgrad":
grad_output8, S1 = LinearFunction.quant(
grad_output, args.quant_type, dim=[0, 1]
)
x8, S2 = LinearFunction.quant(x, args.quant_type, dim=[0, 1])
grad_weight8 = bnb.functional.igemm(grad_output8, x8)
grad_weight = LinearFunction.dequant(
grad_weight8, S1, S2, grad_output.dtype, args.quant_type
)
# grad_weight32 = torch.einsum('bso,bsi->oi', grad_output, x)
grad_input = grad_output.matmul(weight)
elif args.use_8bit_training == "full":
grad_output8, S1 = LinearFunction.quant(
grad_output, args.quant_type, dim=[0, 1]
)
x8, S2 = LinearFunction.quant(x, args.quant_type, dim=[0, 1])
grad_weight8 = torch.zeros_like(weight, dtype=torch.int32)
bnb.functional.igemm(grad_output8, x8, out=grad_weight8)
grad_weight = LinearFunction.dequant(
grad_weight8, S1, S2, grad_output.dtype, args.quant_type
)
grad_output8, S1 = LinearFunction.quant(
grad_output, args.quant_type, dim=2
)
weight8, S3 = LinearFunction.quant(weight, args.quant_type, dim=0)
grad_input8 = bnb.functional.igemm(grad_output8, weight8)
grad_input = LinearFunction.dequant(
grad_input8, S1, S3, grad_output.dtype, args.quant_type
)
else:
grad_input = grad_output.matmul(weight)
grad_weight = torch.einsum("bsi,bso->oi", x, grad_output)
return grad_input, grad_weight, grad_bias, None
class Linear8bit(nn.Module):
def __init__(self, input_features, output_features, bias=True, args=None):
super(Linear8bit, self).__init__()
self.input_features = input_features
self.output_features = output_features
self.args = args
self.weight = nn.Parameter(torch.empty(output_features, input_features))
if bias:
self.bias = nn.Parameter(torch.empty(output_features))
else:
self.register_parameter("bias", None)
torch.nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
torch.nn.init.zeros_(self.bias)
def forward(self, x):
self.args.training = self.training
return LinearFunction.apply(x, self.weight, self.bias, self.args)
def test_linear8bit():
l0 = torch.nn.Linear(32, 64).cuda().half()
l1 = bnb.nn.Linear8bit(32, 64, args=get_args()).cuda().half()
l2 = Linear8bit(32, 64, args=get_args()).cuda().half()
l3 = bnb.nn.Linear8bitLt(32, 64).cuda().half()
l0.weight.data = l2.weight.data.clone()
l0.bias.data = l2.bias.data.clone()
l1.weight.data = l2.weight.data.clone()
l1.bias.data = l2.bias.data.clone()
l3.weight.data = l2.weight.data.clone()
l3.bias.data = l2.bias.data.clone()
for i in range(100):
b1 = torch.randn(16, 8, 32, device="cuda").half()
t = torch.randn(16, 8, 64, device="cuda").half()
b2 = b1.clone()
b3 = b1.clone()
b0 = b1.clone()
o0 = l0(b0)
o1 = l1(b1)
o2 = l2(b2)
o3 = l3(b3)
assert_all_approx_close(o1, o2, atol=0.013, rtol=0.05, count=1)
assert_all_approx_close(o3, o2, atol=0.013, rtol=0.05, count=1)
loss0 = torch.nn.functional.mse_loss(o0, t)
loss1 = torch.nn.functional.mse_loss(o1, t)
loss2 = torch.nn.functional.mse_loss(o2, t)
loss3 = torch.nn.functional.mse_loss(o3, t)
loss0.backward()
loss1.backward()
loss2.backward()
loss3.backward()
assert_all_approx_close(
l1.bias.grad, l2.bias.grad, atol=0.01, rtol=0, count=2
)
assert_all_approx_close(
l3.bias.grad, l2.bias.grad, atol=0.01, rtol=0, count=2
)
assert_all_approx_close(
l1.weight.grad, l2.weight.grad, atol=0.013, rtol=0.05, count=2
)
assert_all_approx_close(
l3.weight.grad, l2.weight.grad, atol=0.013, rtol=0.05, count=2
)
err1 = torch.abs(l0.weight.grad - l1.weight.grad).mean().item()
err2 = torch.abs(l0.weight.grad - l2.weight.grad).mean().item()
err3 = torch.abs(l0.weight.grad - l3.weight.grad).mean().item()
assert err1 * 0.8 < err2
assert err2 * 0.8 < err3
assert err3 * 0.8 < err1
l0.weight.grad = None
l1.weight.grad = None
l2.weight.grad = None
l3.weight.grad = None
l0.bias.grad = None
l1.bias.grad = None
l2.bias.grad = None
l3.bias.grad = None
threshold = [0.0, 3.0]
values = threshold
names = ["threshold_{0}".format(vals) for vals in values]
@pytest.mark.parametrize("threshold", values, ids=names)
def test_linear8bitlt_inference(threshold):
l1 = bnb.nn.Linear8bitLt(32, 64, threshold=threshold).cuda().half()
assert l1.weight.device.type == "cuda"
assert l1.weight.dtype == torch.float16
l1.eval()
for i in range(100):
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = l1(b1)
if i == 1:
assert l1.state.CxB is not None
def test_linear8bitlt_accumulated_gradient():
l1 = torch.nn.Sequential(
*[bnb.nn.Linear8bitLt(32, 32).cuda().half() for i in range(2)]
)
l2 = torch.nn.Sequential(
*[torch.nn.Linear(32, 32).cuda().half() for i in range(2)]
)
l2[0].weight = torch.nn.Parameter(l1[0].weight.clone())
l2[0].bias = torch.nn.Parameter(l1[0].bias.clone())
l2[1].weight = torch.nn.Parameter(l1[1].weight.clone())
l2[1].bias = torch.nn.Parameter(l1[1].bias.clone())
opt1 = bnb.optim.Adam8bit(l1.parameters(), lr=0.001)
opt2 = bnb.optim.Adam8bit(l2.parameters(), lr=0.001)
acc_steps = 10
for i in range(10):
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = l1(b1)
o2 = l2(b1)
loss1 = o1.mean()
loss2 = o2.mean()
loss1.backward()
loss2.backward()
if i == 2:
assert l1[0].state.CxB is not None
assert l1[1].state.CxB is not None
if i > 0 and i % acc_steps == 0:
opt1.step()
opt1.zero_grad(True)
opt2.step()
opt2.zero_grad(True)
assert_all_approx_close(
l1[0].weight, l2[0].weight, rtol=1.05, atol=0.01, count=2
)
assert_all_approx_close(
l1[1].weight, l2[1].weight, rtol=1.05, atol=0.01, count=2
)
# we do this copy because otherwise we have small divergences over time that add up
l1[0].weight.data.copy_(l2[0].weight.data)
l1[1].weight.data.copy_(l2[1].weight.data)
else:
torch.testing.assert_allclose(l1[0].weight.grad, l2[0].weight.grad)
torch.testing.assert_allclose(l1[1].weight.grad, l2[1].weight.grad)
threshold = [0.0, 2.0]
values = threshold
names = ["threshold_{0}".format(vals) for vals in values]
@pytest.mark.parametrize("threshold", values, ids=names)
def test_linear8bitlt_no_fp16_weights(threshold):
l1 = (
bnb.nn.Linear8bitLt(32, 64, threshold=threshold, has_fp16_weights=False)
.cuda()
.half()
)
assert l1.weight.dtype == torch.int8
l1.eval()
for i in range(100):
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = l1(b1)
assert o1.dtype == torch.float16
mlp = MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False).cuda()
assert mlp.fc1.weight.dtype == torch.int8
assert mlp.fc2.weight.dtype == torch.int8
for i in range(100):
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = mlp(b1)
assert o1.dtype == torch.float16
if threshold > 0:
assert mlp.fc1.state.idx is not None
if threshold > 0:
assert mlp.fc2.state.idx is not None
mlp = (
MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False)
.cuda()
.half()
)
assert mlp.fc1.weight.dtype == torch.int8
assert mlp.fc2.weight.dtype == torch.int8
for i in range(100):
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = mlp(b1)
assert o1.dtype == torch.float16
if threshold > 0:
assert mlp.fc1.state.idx is not None
if threshold > 0:
assert mlp.fc2.state.idx is not None
mlp = (
MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False)
.half()
.cuda()
)
for i in range(100):
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = mlp(b1)
assert o1.dtype == torch.float16
if threshold > 0:
assert mlp.fc1.state.idx is not None
if threshold > 0:
assert mlp.fc2.state.idx is not None
assert mlp.fc1.weight.dtype == torch.int8
assert mlp.fc2.weight.dtype == torch.int8
mlp = (
MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False)
.half()
.to("cuda")
)
for i in range(100):
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = mlp(b1)
assert o1.dtype == torch.float16
if threshold > 0:
assert mlp.fc1.state.idx is not None
if threshold > 0:
assert mlp.fc2.state.idx is not None
assert mlp.fc1.weight.dtype == torch.int8
assert mlp.fc2.weight.dtype == torch.int8
assert mlp.fc1.weight.device.type == "cuda"
assert mlp.fc2.weight.device.type == "cuda"
mlp = (
MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False)
.to(torch.float16)
.to("cuda")
)
for i in range(100):
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = mlp(b1)
assert o1.dtype == torch.float16
if threshold > 0:
assert mlp.fc1.state.idx is not None
if threshold > 0:
assert mlp.fc2.state.idx is not None
assert mlp.fc1.weight.dtype == torch.int8
assert mlp.fc2.weight.dtype == torch.int8
assert mlp.fc1.weight.device.type == "cuda"
assert mlp.fc2.weight.device.type == "cuda"
def test_linear8bitlt_fp32_bias():
# casts model to fp16 -> int8 automatically
l1 = bnb.nn.Linear8bitLt(32, 64, has_fp16_weights=False).cuda()
assert l1.weight.dtype == torch.int8
assert l1.bias.dtype == torch.float32
for i in range(100):
b1 = torch.randn(16, 8, 32, device="cuda").half()
# casts bias to fp32
o1 = l1(b1)
assert l1.bias.dtype == torch.float16
# casts model to fp16 -> int8 automatically
l1 = bnb.nn.Linear8bitLt(32, 64, has_fp16_weights=False, bias=False).cuda()
assert l1.weight.dtype == torch.int8
assert l1.bias is None
for i in range(100):
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = l1(b1)
assert l1.bias is None
|