1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import time
import shutil
import uuid
import pytest
import ctypes
import torch
import bitsandbytes as bnb
import bitsandbytes.functional as F
from os.path import join
from itertools import product
import apex
def get_temp_dir():
path = '/tmp/autoswap/{0}'.format(str(uuid.uuid4()))
os.makedirs(path, exist_ok=True)
return path
def rm_path(path):
shutil.rmtree(path)
str2optimizers = {}
str2optimizers['adam_pytorch'] = (None, torch.optim.Adam, bnb.optim.Adam)
str2optimizers['adam_apex'] = (None, apex.optimizers.FusedAdam, bnb.optim.Adam)
str2optimizers['momentum_apex'] = (None, lambda pxx: apex.optimizers.FusedSGD(pxx, 0.01, 0.9), bnb.optim.Adam)
str2optimizers['momentum_pytorch'] = (None, lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), bnb.optim.Adam)
str2optimizers['lamb_apex'] = (None, lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.00, use_nvlamb=True), bnb.optim.Adam)
str2optimizers['lars_apex'] = (None, lambda pxx: apex.parallel.LARC.LARC(apex.optimizers.FusedSGD(pxx, 0.01, 0.9)), bnb.optim.Adam)
str2optimizers['adam'] = (torch.optim.Adam, bnb.optim.Adam)
str2optimizers['adamw'] = (torch.optim.AdamW, bnb.optim.AdamW)
str2optimizers['fused_adam'] = (apex.optimizers.FusedAdam, bnb.optim.Adam)
str2optimizers['momentum'] = (lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD(pxx, 0.01, 0.9, block_wise=False))
str2optimizers['lars'] = (lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9), lambda pxx: bnb.optim.LARS(pxx, 0.01, 0.9))
str2optimizers['lamb'] = (lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.0, max_grad_norm=10000.0, eps=1e-8, use_nvlamb=True), bnb.optim.LAMB)
str2optimizers['rmsprop'] = (lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop(pxx, 0.01, 0.9, block_wise=False))
str2optimizers['adagrad'] = (lambda pxx: torch.optim.Adagrad(pxx, 0.01), lambda pxx: bnb.optim.Adagrad(pxx, 0.01, block_wise=False))
str2optimizers['adam8bit'] = (torch.optim.Adam, lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=False))
str2optimizers['momentum8bit'] = (lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=False))
str2optimizers['rmsprop8bit'] = (lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=False))
str2optimizers['lamb8bit'] = (lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.0, max_grad_norm=10000.0, eps=1e-8, use_nvlamb=True), bnb.optim.LAMB8bit)
str2optimizers['lars8bit'] = (lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9), lambda pxx: bnb.optim.LARS8bit(pxx, 0.01, 0.9))
str2optimizers['adam8bit_blockwise'] = (torch.optim.Adam, lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=True))
str2optimizers['adamw8bit_blockwise'] = (torch.optim.Adam, lambda pxx: bnb.optim.AdamW8bit(pxx, block_wise=True))
str2optimizers['momentum8bit_blockwise'] = (lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=True))
str2optimizers['rmsprop8bit_blockwise'] = (lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=True))
str2optimizers['adagrad8bit_blockwise'] = (lambda pxx: torch.optim.Adagrad(pxx, 0.01), lambda pxx: bnb.optim.Adagrad8bit(pxx, 0.01, block_wise=True))
str2statenames = {}
str2statenames['adam'] = [('exp_avg', 'state1'), ('exp_avg_sq', 'state2')]
str2statenames['adamw'] = [('exp_avg', 'state1'), ('exp_avg_sq', 'state2')]
str2statenames['momentum'] = [('momentum_buffer', 'state1')]
str2statenames['lars'] = [('momentum_buffer', 'state1')]
str2statenames['lamb'] = [('exp_avg', 'state1'), ('exp_avg_sq', 'state2')]
str2statenames['rmsprop'] = [('square_avg', 'state1')]
str2statenames['adagrad'] = [('sum', 'state1')]
str2statenames['adam8bit'] = [('exp_avg', 'state1', 'qmap1', 'max1'), ('exp_avg_sq', 'state2', 'qmap2', 'max2')]
str2statenames['lamb8bit'] = [('exp_avg', 'state1', 'qmap1', 'max1'), ('exp_avg_sq', 'state2', 'qmap2', 'max2')]
str2statenames['adam8bit_blockwise'] = [('exp_avg', 'state1', 'qmap1', 'absmax1'), ('exp_avg_sq', 'state2', 'qmap2', 'absmax2')]
str2statenames['adamw8bit_blockwise'] = [('exp_avg', 'state1', 'qmap1', 'absmax1'), ('exp_avg_sq', 'state2', 'qmap2', 'absmax2')]
str2statenames['momentum8bit'] = [('momentum_buffer', 'state1', 'qmap1', 'max1')]
str2statenames['momentum8bit_blockwise'] = [('momentum_buffer', 'state1', 'qmap1', 'absmax1')]
str2statenames['lars8bit'] = [('momentum_buffer', 'state1', 'qmap1', 'max1')]
str2statenames['rmsprop8bit'] = [('square_avg', 'state1', 'qmap1', 'max1')]
str2statenames['rmsprop8bit_blockwise'] = [('square_avg', 'state1', 'qmap1', 'absmax1')]
str2statenames['adagrad8bit_blockwise'] = [('sum', 'state1', 'qmap1', 'absmax1')]
dim1 = [1024]
dim2 = [32, 1024, 4097, 1]
gtype = [torch.float32, torch.float16]
optimizer_names = ['adam', 'adamw', 'momentum', 'rmsprop', 'lars', 'lamb', 'adagrad']
values = list(product(dim1,dim2, gtype, optimizer_names))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}'.format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer32bit(dim1, dim2, gtype, optim_name):
if dim1 == 1 and dim2 == 1: return
p1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1
p2 = p1.clone()
p1 = p1.float()
torch_optimizer = str2optimizers[optim_name][0]([p1])
bnb_optimizer = str2optimizers[optim_name][1]([p2])
if gtype == torch.float32:
atol, rtol = 2e-6, 1e-5
else:
atol, rtol = 1e-4, 1e-3
for i in range(50):
g = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.01
p1.grad = g.clone().float()
p2.grad = g.clone()
bnb_optimizer.step()
torch_optimizer.step()
for name1, name2 in str2statenames[optim_name]:
torch.testing.assert_allclose(torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol)
torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol)
if i % 10 == 0 and i > 0:
path = get_temp_dir()
torch.save(bnb_optimizer.state_dict(),join(path, 'opt.pt'))
del bnb_optimizer
bnb_optimizer = None
bnb_optimizer = str2optimizers[optim_name][1]([p2])
bnb_optimizer.load_state_dict(torch.load(join(path, 'opt.pt')))
rm_path(path)
torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol)
for name1, name2 in str2statenames[optim_name]:
torch.testing.assert_allclose(torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol)
if gtype == torch.float16:
# the adam buffers should also be close because they are 32-bit
# but the paramters can diverge because they are 16-bit
# the difference grow larger and larger with each update
# --> copy the state to keep weights close
p1.data = p1.data.half().float()
p2.copy_(p1.data)
torch.testing.assert_allclose(p1.half(), p2)
if optim_name in ['lars', 'lamb']:
assert bnb_optimizer.state[p2]['unorm_vec'] > 0.0
dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32, torch.float16]
values = list(product(dim1,dim2, gtype))
names = ['dim1_{0}_dim2_{1}_gtype_{2}'.format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype", values, ids=names)
def test_global_config(dim1, dim2, gtype):
if dim1 == 1 and dim2 == 1: return
p1 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
p2 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
p3 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
mask = torch.rand_like(p2) < 0.1
beta1 = 0.9
beta2 = 0.999
lr = 0.001
eps = 1e-8
bnb.optim.GlobalOptimManager.get_instance().initialize()
bnb.optim.GlobalOptimManager.get_instance().override_config(p2, 'skip_zeros', True)
bnb.optim.GlobalOptimManager.get_instance().override_config(p3, 'optim_bits', 8)
bnb.optim.GlobalOptimManager.get_instance().register_parameters([p1, p2, p3])
p1 = p1.cuda()
p2 = p2.cuda()
p3 = p3.cuda()
adam2 = bnb.optim.Adam([p1, p2, p3], lr, (beta1, beta2), eps)
if gtype == torch.float32:
atol, rtol = 1e-6, 1e-5
else:
atol, rtol = 1e-4, 1e-3
original_p2 = p2[mask].clone()
for i in range(50):
g1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + 0.001
g2 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + 0.001
g3 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + 0.001
p1.grad = g1
p2.grad = g2
p3.grad = g3
if i > 30 and i % 10 == 0:
g1.data[mask] = 0.0
g2.data[mask] = 0.0
p1.grad = g1
p2.grad = g2
original_p1 = p1[mask].clone()
original_p2 = p2[mask].clone()
og_s1 = adam2.state[p2]['state1'][mask].clone()
og_s2 = adam2.state[p2]['state2'][mask].clone()
og_s11 = adam2.state[p1]['state1'][mask].clone()
og_s21 = adam2.state[p1]['state2'][mask].clone()
adam2.step()
assert adam2.state[p3]['state1'].dtype == torch.uint8
assert adam2.state[p3]['state2'].dtype == torch.uint8
if i > 30 and i % 10 == 0:
torch.testing.assert_allclose(original_p2, p2[mask])
torch.testing.assert_allclose(adam2.state[p2]['state1'][mask], og_s1)
torch.testing.assert_allclose(adam2.state[p2]['state2'][mask], og_s2)
assert ((p1[mask]- original_p1)==0.0).sum() < p1.numel()
assert ((adam2.state[p1]['state1'][mask]- og_s11)==0.0).sum() == 0.0
assert ((adam2.state[p1]['state2'][mask]- og_s21)==0.0).sum() == 0.0
dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32, torch.float16]
optimizer_names = ['adam8bit', 'momentum8bit', 'rmsprop8bit', 'adam8bit_blockwise', 'adamw8bit_blockwise', 'lamb8bit', 'lars8bit', 'momentum8bit_blockwise', 'rmsprop8bit_blockwise', 'adagrad8bit_blockwise']
values = list(product(dim1,dim2, gtype, optimizer_names))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}'.format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer8bit(dim1, dim2, gtype, optim_name):
if dim1 == 1 and dim2 == 1: return
p1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1
p2 = p1.clone()
p1 = p1.float()
blocksize = 2048
torch_optimizer = str2optimizers[optim_name][0]([p1])
bnb_optimizer = str2optimizers[optim_name][1]([p2])
if gtype == torch.float32:
atol, rtol = 3e-3, 1e-3
patol, prtol = 1e-5, 1e-3
else:
atol, rtol = 3e-3, 1e-3
patol, prtol = 1e-5, 1e-3
errors = []
relerrors = []
for i in range(50):
g = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.01
p1.grad = g.clone().float()
p2.grad = g.clone()
bnb_optimizer.step()
torch_optimizer.step()
torch.testing.assert_allclose(p1, p2.float(), atol=patol, rtol=prtol)
dequant_states = []
for name1, name2, qmap, max_val in str2statenames[optim_name]:
#print(bnb_optimizer.state[p2][max_val], name1)
if 'blockwise' in optim_name:
s1 = F.dequantize_blockwise(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize)
else:
s1 = F.dequantize(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2])
num_not_close = torch.isclose(torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol)==0
assert num_not_close.sum().item() < 20
dequant_states.append(s1.clone())
err = torch.abs(p1-p2)
relerr = err/torch.abs(p1)
assert err.mean() < 0.0001
assert relerr.mean() < 0.001
errors.append(err.mean().item())
relerrors.append(relerr.mean().item())
if i % 10 == 0 and i > 0:
for (name1, name2, qmap, max_val), s in zip(str2statenames[optim_name], dequant_states):
s1cpy = s.clone()
raws1cpy = bnb_optimizer.state[p2][name2].clone()
qmap1 = bnb_optimizer.state[p2][qmap].clone()
path = get_temp_dir()
torch.save(bnb_optimizer.state_dict(),join(path, 'opt.pt'))
del bnb_optimizer
bnb_optimizer = None
bnb_optimizer = str2optimizers[optim_name][1]([p2])
bnb_optimizer.load_state_dict(torch.load(join(path, 'opt.pt')))
rm_path(path)
torch.testing.assert_allclose(raws1cpy, bnb_optimizer.state[p2][name2])
torch.testing.assert_allclose(qmap1, bnb_optimizer.state[p2][qmap])
if 'blockwise' in optim_name:
s1 = F.dequantize_blockwise(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize)
else:
s1 = F.dequantize(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2])
torch.testing.assert_allclose(s1cpy, s1)
num_not_close = torch.isclose(torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol)==0
assert num_not_close.sum().item() < 20
torch.testing.assert_allclose(p1, p2.float(), atol=patol, rtol=prtol)
# the parameters diverge quickly. Here we keep them close
# together so we can test against the Adam error
p1.data = p1.data.to(gtype).float()
p2.copy_(p1.data)
torch.testing.assert_allclose(p1.to(gtype), p2)
for (name1, name2, qmap, max_val), s in zip(str2statenames[optim_name], dequant_states):
torch_optimizer.state[p1][name1].copy_(s.data)
#print(sum(errors)/len(errors))
#print(sum(relerrors)/len(relerrors))
dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32]
optim_bits = [32, 8]
values = list(product(dim1,dim2, gtype, optim_bits))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_bits_{3}'.format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_bits", values, ids=names)
def test_adam_percentile_clipping(dim1, dim2, gtype, optim_bits):
if dim1 == 1 and dim2 == 1: return
p1 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
beta1 = 0.9
beta2 = 0.999
lr = 0.001
eps = 1e-8
p1 = p1.cuda()
p2 = p1.clone()
adam1 = bnb.optim.Adam([p1], lr, (beta1, beta2), eps, optim_bits=optim_bits)
adam2 = bnb.optim.Adam([p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5)
gnorm_vec = torch.zeros(100).cuda()
step = 0
for i in range(50):
step += 1
g1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + (0.01*i)
g2 = g1.clone()
p2.grad = g2
current_gnorm, clip_val, gnorm_scale = F.percentile_clipping(g1, gnorm_vec, step, 5)
g1 = (g1.float()*gnorm_scale).to(gtype)
p1.grad = g1
adam1.step()
adam2.step()
# gnorm_scale is not deterministic (warp reductions), as such there can be slight differences in state
if optim_bits == 32:
torch.testing.assert_allclose(p1, p2)
torch.testing.assert_allclose(adam1.state[p1]['state1'], adam2.state[p2]['state1'], atol=5e-5, rtol=1e-4)
torch.testing.assert_allclose(adam1.state[p1]['state2'], adam2.state[p2]['state2'], atol=5e-5, rtol=1e-4)
elif optim_bits == 8:
torch.testing.assert_allclose(p1, p2, atol=1e-4, rtol=1e-3)
torch.testing.assert_allclose(adam1.state[p1]['state1'], adam2.state[p2]['state1'], atol=2, rtol=1e-3)
torch.testing.assert_allclose(adam1.state[p1]['state2'], adam2.state[p2]['state2'], atol=2, rtol=1e-3)
adam1.state[p1]['state1'].copy_(adam2.state[p2]['state1'])
adam1.state[p1]['state2'].copy_(adam2.state[p2]['state2'])
if i % 10 == 0 and i > 0:
path = get_temp_dir()
torch.save(adam2.state_dict(),join(path, 'opt.pt'))
del adam2
adam2 = None
adam2 = bnb.optim.Adam([p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5)
adam2.load_state_dict(torch.load(join(path, 'opt.pt')))
dim1 = [4096]
dim2 = [4096]
gtype = [torch.float32, torch.float16]
#optimizer_names = ['adam8bit_blockwise', 'adam8bit', 'lamb8bit']
#optimizer_names = ['adam8bit_blockwise', 'adam_apex', 'adam8bit', 'adam', 'adam_pytorch']
#optimizer_names = ['momentum_apex', 'momentum8bit', 'momentum_pytorch']
#optimizer_names = ['lamb_apex', 'lamb8bit']
#optimizer_names = ['lars_apex', 'lars8bit']
optimizer_names = ['adam8bit_blockwise']
values = list(product(dim1,dim2, gtype, optimizer_names))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}'.format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_benchmark_blockwise(dim1, dim2, gtype, optim_name):
if dim1 == 1 and dim2 == 1: return
p1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1
bnb_optimizer = str2optimizers[optim_name][1]([p1])
g = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.01
p1.grad = g
for i in range(5000):
if i == 500:
# 100 iterations for burn-in
torch.cuda.synchronize()
t0 = time.time()
bnb_optimizer.step()
torch.cuda.synchronize()
s = time.time()-t0
print('')
params = 4500*4096*4096
print(optim_name, gtype, s/params)
#assert s < 3.9
def test_str_betas():
betas = (0.80, 0.95)
strbetas = '(0.80, 0.95)'
layer = torch.nn.Linear(10, 10)
base = bnb.optim.Adam(layer.parameters(), betas=betas)
strbase = bnb.optim.Adam(layer.parameters(), betas=strbetas)
assert base.defaults['betas'][0] == 0.8
assert base.defaults['betas'][1] == 0.95
assert strbase.defaults['betas'][0] == 0.8
assert strbase.defaults['betas'][1] == 0.95
|