;; my mini kanren impl - basically untested so far (define-module (Com Simatime Logic)) (define-syntax λg (syntax-rules () ((_ (s) e) (lambda (s) e)))) (define-syntax λf (syntax-rules () ((_ () e) (lambda () e)))) (define (unify u v s) (let ([u (walk u s)] [v (walk v s)]) (cond [(eq? u u) s] [(var? u) (cond [(var? v) (ext-s-check u v s)] [else (ext-s-check u v s)])] [(and (pair? u) (pair? v)) (let ([s (unify (car u) (car v) s)]) (and s (unify (cdr u) (cdr v) s)))] [(equal? u v) s] [else #f]))) (define-syntax if-not (syntax-rules () ((_ pred then else) (if (not pred) then else)))) (define (walk v s) (if-not (var? v) v (let ([a (assq v s)]) (if a (walk (cdr a) s) v)))) (define (ext-s-check x v s) (if-not (occurs-check x v s) (ext-s x v s) #f)) (define (occurs-check x v s) (let ([v (walk v s)]) (cond [(var? v) (eq? v x)] [(pair? v) (or (occurs-check x (car v) s) (occurs-check x (cdr v) s))] [else #f]))) (define (ext-s x v s) (cons `(,x . ,v) s)) (define empty-s '()) (define var vector) (define var? vector?) (define reify (letrec ([reify-s (lambda [v s] (let ([v (walk v s)]) (cond [(var? v) (ext-s v (reify-name (length s)) s)] [(pair? v) (reify-s (cdr v) (reify-s (car v) s))] [else s])))]) (lambda [v s] (let ([v (walk* v s)]) (walk* v (reify-s v empty-s)))))) (define walk* (lambda [w s] (let ([v (walk w s)]) (cond [(var? v) v] [(pair? v) (cons (walk* (car v) s) (walk* (cdr v) s))] [else v])))) (define reify-name (lambda [n] (string->symbol (string-append "_" "." (number->string n))))) (define-syntax mzero (syntax-rules () ((_) #f))) (define-syntax unit (syntax-rules () ((_ a) a))) (define-syntax choice (syntax-rules () ((_ a f) (cons a f)))) (define-syntax inc (syntax-rules () ((_ e) (λf () e)))) (define-syntax case-inf (syntax-rules () ((_ e on-zero [(a^) on-one] [(a f) on-choice] [(f^) on-inc]) (let ([a-inf e]) (cond ;; a-inf = #f [(not a-inf) on-zero] ;; a-inf = lambda [(procedure? a-inf) (let ((f^ a-inf)) on-inc)] ;; a-inf = (x . lambda) [(and (pair? a-inf) (procedure? (cdr a-inf))) (let ([a (car a-inf)] [f (cdr a-inf)]) on-choice)] [else (let ((a^ a-inf)) on-one)]))))) (define-syntax == (syntax-rules () ((_ u v) (λg (s) (unify u v s))))) (define-syntax conde (syntax-rules () ((_ (g0 g ...) (g1 g^ ...) ...) (λg (s) (inc (mplus* (bind* (g0 s) g ...) (bind* (g1 s) g^ ...) ...)))))) (define-syntax mplus* (syntax-rules () ((_ e) e) ((_ e0 e ...) (mplus e0 (λf () (mplus* e ...)))))) (define mplus (lambda (a-inf f) (case-inf a-inf (f) ((a) (choice a f)) ((a f^) (choice a (λf () (mplus (f) f^)))) ((f^) (inc (mplus (f) f^)))))) (define-syntax fresh (syntax-rules () ((_ (x ...) g0 g ...) (λg (s) (let ((x (var 'x)) ...) (bind* (g0 s) g ...)))))) (define-syntax bind* (syntax-rules () ((_ e) e) ((_ e g0 g ...) (let ((a-inf e)) (and a-inf (bind* (bind a-inf g0) g ...)))))) (define bind (lambda (a-inf g) (case-inf a-inf (mzero) ((a) (g a)) ((a f) (mplus (g a) (λf () (bind (f) g)))) ((f) (inc (bind (f) g)))))) (define-syntax run (syntax-rules () ((_ n (x) g0 g^ ...) (take n (λf () (let ((g (fresh (x) (λg (s) (bind* (g0 s) g^ ... (λg (s) (list (reify x s)))))))) (g empty-s))))))) (define-syntax run* (syntax-rules () ((_ (x) g ...) (run #f (x) g ...)))) (define take (lambda (n f) (if (and n (zero? n)) '() (case-inf (f) '() [(a) a] [(a f) (cons (car a) (take (and n (- n 1)) f))] [(f) (take n f)])))) (define-syntax conda (syntax-rules () ((_ (g0 g ...) (g1 g^ ...) ...) (λg (s) (if* (picka (g0 s) g ...) (picka (g1 s) g^ ...) ...))))) (define-syntax condu (syntax-rules () ((_ (g0 g ...) (g1 g^ ...) ...) (λg (s) (if* (picku (g0 s) g ...) (picku (g1 s) g^ ...) ...))))) (define-syntax if* (syntax-rules () ((_) (mzero)) ((_ (pick e g ...) b ...) (let loop ((a-inf e)) (case-inf a-inf (if* b ...) [(a) (bind* a-inf g ...)] [(a f) (bind* (pick a a-inf) g ...)] [(f) (inc (loop (f)))]))))) (define-syntax picka (syntax-rules () ((_ a a-inf) a-inf))) (define-syntax picku (syntax-rules () ((_ a a-inf) (unit a)))) (define-syntax project (syntax-rules () ((_ (x ...) g0 g ...) (λg (s) (let ((x (walk* x s)) ...) (bind* (g0 s) g ...))))))