summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBen Sima <ben@bsima.me>2020-05-02 18:26:32 -0700
committerBen Sima <ben@bsima.me>2020-05-02 18:26:32 -0700
commit4b50c03c9767750fbbd857121d500c3afbfdfdf2 (patch)
tree6de5ac77e8f36e0adc2de7ada01e1f9f8584ab58
parentb8c33100286ab307f46d3dfe7adf44008cc59d3e (diff)
Clojure-inspired scheme macros
-rw-r--r--Alpha/Core.scm64
1 files changed, 37 insertions, 27 deletions
diff --git a/Alpha/Core.scm b/Alpha/Core.scm
index 3a5ac6e..b785a13 100644
--- a/Alpha/Core.scm
+++ b/Alpha/Core.scm
@@ -10,6 +10,9 @@
;; booleans
true? false? nil nil?
+ ;; control flow
+ -> ->> fn /.
+
;; dev helpers
comment
))
@@ -40,7 +43,7 @@
(cons init (unfold f (f init) pred))))
(define (sum lst) (fold + 0 lst))
-(define (produce lst) (fold * 1 lst))
+(define (product lst) (fold * 1 lst))
(define count length)
@@ -128,31 +131,38 @@
((_ s args ...)
(format #f s args ...))))
-;; If I implement ML-like interface abstractions in scheme, what would it look like?
-
-;;
-;; ;; seq
-
-;; (define-class <seq> () (_first))
-
-;;
-;; ;; Functor
-
-;; (define-class <functor> ())
-
-;; (define-method (fmap (f <procedure>) (coll <functor>)))
-
-;;
-;; ;; Applicative
-
-;; ;; a -> f a
-;; (define-method (pure (a <any>)))
-
-;; ;; f (a -> b) -> f a -> f b
-;; (define-method (<*> (f <procedure>) (a <applicative>) (b <applicative>)))
+(define-syntax fn
+ (syntax-rules ()
+ ((_ args body ...)
+ (lambda args body ...))))
-;; ;; f a -> f b -> f b
-;; (define-method (*> (a <applicative>) (b <applicative>)))
+(define-syntax ->
+ (syntax-rules ()
+ [(_ a) a]
+ [(_ a (b c ...))
+ (b a c ...)]
+ [(_ a b)
+ (-> a (b))]
+ [(_ a b c ...)
+ (-> (-> a b) c ...)]))
+
+(define-syntax ->>
+ (syntax-rules ()
+ [(_ a) a]
+ [(_ a (b ...))
+ (b ... a)]
+ [(_ a b)
+ (b a)]
+ [(_ a b c ...)
+ (->> (->> a b) c ...)]))
+
+;; Shen-like lambda
+(define-syntax /.
+ (syntax-rules ()
+ [(/. a b)
+ (lambda (a) b)]
+ [(/. a ... (b ...))
+ (lambda (a ...) (b ...))]))
-;; ;; f a -> f b -> f a
-;; (define-method (<* (a <applicative>) (b <applicative>)))
+(define (inc a) (+ 1 a))
+(define (dec a) (- a 1))