1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE NoImplicitPrelude #-}
-- | Commonly useful functions, a Prelude replacement.
--
-- This is designed to be imported everywhere, unqualified (generally
-- the only unqualified import you should use).
--
-- Alpha can be opinionated and break with other Haskell idioms. For
-- example, we define our own operators which have a pattern to their
-- characters:
--
-- - `|` normal function-level applications
-- - `/` indicates doing something inside a functor
-- - `<` and `>` indicate the direction in which values flow
-- - `?` is for boolean tests or assertions
-- between functions
--
-- It seems unnecessarily different at first but it makes things easier
-- to read quickly.
--
-- Pronunciations are given for operators and are taken from
-- [Hoon](https://urbit.org/docs/tutorials/hoon/hoon-school/hoon-syntax/).
-- Pronouncing operators as you write the code is actually a nice way to
-- interact with the codebase, and I do recommend it.
module Alpha
( -- * Re-export Protolude
module X,
String,
-- * Composing
compose,
(.>),
(<.),
-- * Applying
(<|),
(|>),
-- * Mapping
(/>),
(</),
(<%),
(%>),
-- * Binding
bind,
(+>),
-- * Bool
don't,
(?>),
(?<),
(?:),
(?.),
(?+),
-- * Text
str,
tshow,
chomp,
lchomp,
CanSnakeCase (snake),
wrap,
-- * String
capitalize,
lowercase,
-- * Lists
list,
joinWith,
-- * Data Validation
require,
)
where
import qualified Data.Char as Char
import qualified Data.List as List
import Data.String
import qualified Data.Text as Text
import qualified Data.Text.Lazy as LazyText
import Protolude as X hiding (list, ($), (&), (.), (>>=))
import Protolude.Conv
import qualified Prelude
-- | Create a list. This should be @Data.List.singleton@ but that doesn't exist.
list :: a -> [a]
list a = [a]
-- | Composition
compose :: (a -> b) -> (b -> c) -> (a -> c)
compose f g x = g (f x)
-- | Right-composition operator
--
-- Pronunciation: dot-gar
(.>) :: (a -> b) -> (b -> c) -> (a -> c)
f .> g = compose f g
-- | Left-composition operator
--
-- Pronunciation: gal-dot
(<.) :: (b -> c) -> (a -> b) -> (a -> c)
g <. f = compose f g
-- | Alias for map, fmap, <$>
--
-- Pronunciation: gal-fas
(</) :: Functor f => (a -> b) -> f a -> f b
f </ g = fmap f g
-- | Double fmap. A function on the right goes "into" two functors
-- (i.e. it goes "two levels deep"), applies the function to the inner
-- values, then returns the result wrapped in the two functors.
--
-- Pronunciation: gal-cen
(<%) :: (Functor f0, Functor f1) => (b -> a) -> f0 (f1 b) -> f0 (f1 a)
(<%) = fmap <. fmap
-- | Double fmap. A function on the left goes "into" two functors
-- (i.e. it goes "two levels deep"), applies the function to the inner
-- values, then returns the result wrapped in the two functors.
--
-- Pronunciation: cen-gar
(%>) :: (Functor f0, Functor f1) => (a -> b) -> f0 (f1 a) -> f0 (f1 b)
(%>) = fmap .> fmap
-- | Normal function application. Do the right side, then pass the
-- return value to the function on the left side.
--
-- Pronunciation: gal-bar
(<|) :: (a -> b) -> a -> b
f <| g = f g
infixr 1 <|
-- | Reverse function application. Do the left side, then pass the
-- return value to the function on the right side.
--
-- Pronunciation: bar-gar
(|>) :: a -> (a -> b) -> b
f |> g = g f
infixl 1 |>
-- | Alias for <&>. Can be read as "and then". Basically does into a
-- functor, does some computation, then returns the same kind of
-- functor. Could also be defined as `f +> return <. g`
--
-- Pronunciation: fas-gar
(/>) :: Functor f => f a -> (a -> b) -> f b
f /> g = fmap g f
infixl 1 />
bind :: Monad m => m a -> (a -> m b) -> m b
bind a f = a Prelude.>>= f
(+>) :: Monad m => m a -> (a -> m b) -> m b
a +> b = a Prelude.>>= b
infixl 1 +>
-- | If-then-else. wutcol
(?:) :: Bool -> (p, p) -> p
a ?: (b, c) = if a then b else c
-- | Inverted if-then-else. wutdot
(?.) :: Bool -> (p, p) -> p
a ?. (b, c) = if a then c else b
-- | Positive assertion. wutgar
(?>) :: Bool -> (Bool -> Text -> a) -> Text -> a
a ?> f = if a then f a else panic "wutgar failed"
-- | Lisp-style cond. wutlus
(?+) :: t -> [(t -> Bool, p)] -> p
a ?+ ((p, v) : ls) = if p a then v else a ?+ ls
_ ?+ [] = panic "wutlus: empty cond list"
-- | Negative assertion. wutgal
(?<) :: Bool -> (Bool -> Text -> a) -> Text -> a
a ?< f = if not a then f a else panic "wutgal failed"
-- | Removes newlines from text.
chomp :: Text -> Text
chomp = Text.filter (/= '\n')
-- | Removes newlines from lazy text.
lchomp :: LazyText.Text -> LazyText.Text
lchomp = LazyText.filter (/= '\n')
-- | Join a list of things with a separator.
joinWith :: [a] -> [[a]] -> [a]
joinWith = intercalate
-- | can you just not
don't :: Bool -> Bool
don't = do not
{-# ANN don't ("HLint: ignore Redundant do" :: String) #-}
-- | Class for turning different string types to snakeCase.
class CanSnakeCase s where
snake :: s -> s
instance CanSnakeCase Text where
snake = Text.toLower .> Text.replace " " "-"
capitalize :: String -> String
capitalize [] = []
capitalize s = (Char.toUpper <| List.head s) : (Char.toLower </ List.tail s)
lowercase :: String -> String
lowercase s = [Char.toLower c | c <- s]
{-# WARNING require "'require' remains in code" #-}
require :: Text -> Maybe a -> a
require _ (Just x) = x
require s Nothing = panic <| s <> " not found"
-- | Wrap text at the given limit.
wrap :: Int -> Text -> Text
wrap lim = Text.words .> wrap_ 0 .> Text.unwords
where
wrap_ :: Int -> [Text] -> [Text]
wrap_ _ [] = []
wrap_ pos (w : ws)
| pos == 0 = w : wrap_ (pos + lw) ws
| pos + lw + 1 > lim = wrap_ 0 (Text.cons '\n' w : ws)
| otherwise = w : wrap_ (pos + lw + 1) ws
where
lw = Text.length w
str :: (StringConv a b) => a -> b
str = Protolude.Conv.toS
tshow :: Show a => a -> Text
tshow = show
|