1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
# : out mynion
#
# : dep exllama
# : dep slixmpp
import argparse
import exllama # type: ignore
import Biz.Log
import glob
import logging
import os
import slixmpp
import slixmpp.exceptions
import sys
import torch
import typing
def smoosh(s: str) -> str:
return s.replace("\n", " ")
class Mynion(slixmpp.ClientXMPP):
def __init__(
self,
jid: str,
password: str,
model: exllama.model.ExLlama,
tokenizer: exllama.tokenizer.ExLlamaTokenizer,
generator: exllama.generator.ExLlamaGenerator,
) -> None:
slixmpp.ClientXMPP.__init__(self, jid, password)
self.plugin.enable("xep_0085") # type: ignore
self.plugin.enable("xep_0184") # type: ignore
self.name = "mynion"
self.user = "ben"
self.first_round = True
self.min_response_tokens = 4
self.max_response_tokens = 256
self.extra_prune = 256
# todo: handle summary rollup when max_seq_len is reached
self.max_seq_len = 8000
self.model = model
self.tokenizer = tokenizer
self.generator = generator
root = os.getenv("BIZ_ROOT", "")
# this should be parameterized somehow
with open(os.path.join(root, "Biz", "Mynion", "Prompt.md")) as f:
txt = f.read()
txt = txt.format(user=self.user, name=self.name)
# this is the "system prompt", ideally i would load this in/out of a
# database with all of the past history. if the history gets too long, i
# can roll it up by asking llama to summarize it
self.past = smoosh(txt)
ids = tokenizer.encode(self.past)
self.generator.gen_begin(ids)
self.add_event_handler("session_start", self.session_start)
self.add_event_handler("message", self.message)
def session_start(self) -> None:
self.send_presence()
try:
self.get_roster() # type: ignore
except slixmpp.exceptions.IqError as err:
logging.error("There was an error getting the roster")
logging.error(err.iq["error"]["condition"])
self.disconnect()
except slixmpp.exceptions.IqTimeout:
logging.error("Server is taking too long to respond")
self.disconnect()
def message(self, msg: slixmpp.Message) -> None:
if msg["type"] in ("chat", "normal"):
res_line = f"{self.name}: "
res_tokens = self.tokenizer.encode(res_line)
num_res_tokens = res_tokens.shape[-1]
if self.first_round:
in_tokens = res_tokens
else:
# read and format input
in_line = f"{self.user}: " + msg["body"].strip() + "\n"
in_tokens = self.tokenizer.encode(in_line)
in_tokens = torch.cat((in_tokens, res_tokens), dim=1)
# If we're approaching the context limit, prune some whole lines
# from the start of the context. Also prune a little extra so we
# don't end up rebuilding the cache on every line when up against
# the limit.
expect_tokens = in_tokens.shape[-1] + self.max_response_tokens
max_tokens = self.max_seq_len - expect_tokens
if self.generator.gen_num_tokens() >= max_tokens:
generator.gen_prune_to(
self.max_seq_len - expect_tokens - self.extra_prune,
self.tokenizer.newline_token_id,
)
# feed in the user input and "{self.name}:", tokenized
self.generator.gen_feed_tokens(in_tokens)
# start beam search?
self.generator.begin_beam_search()
# generate tokens, with streaming
# TODO: drop the streaming!
for i in range(self.max_response_tokens):
# disallowing the end condition tokens seems like a clean way to
# force longer replies
if i < self.min_response_tokens:
self.generator.disallow_tokens(
[
self.tokenizer.newline_token_id,
self.tokenizer.eos_token_id,
]
)
else:
self.generator.disallow_tokens(None)
# get a token
gen_token = self.generator.beam_search()
# if token is EOS, replace it with a newline before continuing
if gen_token.item() == self.tokenizer.eos_token_id:
self.generator.replace_last_token(
self.tokenizer.newline_token_id
)
# decode the current line
num_res_tokens += 1
text = self.tokenizer.decode(
self.generator.sequence_actual[:, -num_res_tokens:][0]
)
# append to res_line
res_line += text[len(res_line) :]
# end conditions
breakers = [
self.tokenizer.eos_token_id,
# self.tokenizer.newline_token_id,
]
if gen_token.item() in breakers:
break
# try to drop the "ben:" at the end
if res_line.endswith(f"{self.user}:"):
logging.info("rewinding!")
plen = self.tokenizer.encode(f"{self.user}:").shape[-1]
self.generator.gen_rewind(plen)
break
# end generation and send the reply
self.generator.end_beam_search()
res_line = res_line.removeprefix(f"{self.name}:")
res_line = res_line.removesuffix(f"{self.user}:")
self.first_round = False
msg.reply(res_line).send() # type: ignore
MY_MODELS = [
"Llama-2-13B-GPTQ",
"Nous-Hermes-13B-GPTQ",
"Nous-Hermes-Llama2-13b-GPTQ",
"Wizard-Vicuna-13B-Uncensored-GPTQ",
"Wizard-Vicuna-13B-Uncensored-SuperHOT-8K-GPTQ",
"Wizard-Vicuna-30B-Uncensored-GPTQ",
"CodeLlama-13B-Python-GPTQ",
"CodeLlama-13B-Instruct-GPTQ",
"CodeLlama-34B-Instruct-GPTQ",
]
def load_model(model_name: str) -> typing.Any:
assert model_name in MY_MODELS
if not torch.cuda.is_available():
raise ValueError("no cuda")
sys.exit(1)
torch.set_grad_enabled(False)
torch.cuda._lazy_init() # type: ignore
ml_models = "/mnt/campbell/ben/ml-models"
model_dir = os.path.join(ml_models, model_name)
tokenizer_path = os.path.join(model_dir, "tokenizer.model")
config_path = os.path.join(model_dir, "config.json")
st_pattern = os.path.join(model_dir, "*.safetensors")
st = glob.glob(st_pattern)
if len(st) != 1:
print("found multiple safetensors!")
sys.exit()
model_path = st[0]
config = exllama.model.ExLlamaConfig(config_path)
config.model_path = model_path
# gpu split
config.set_auto_map("23")
model = exllama.model.ExLlama(config)
cache = exllama.model.ExLlamaCache(model)
tokenizer = exllama.tokenizer.ExLlamaTokenizer(tokenizer_path)
generator = exllama.generator.ExLlamaGenerator(model, tokenizer, cache)
generator.settings = exllama.generator.ExLlamaGenerator.Settings()
return (model, tokenizer, generator)
def main(
model: exllama.model.ExLlama,
tokenizer: exllama.tokenizer.ExLlamaTokenizer,
generator: exllama.generator.ExLlamaGenerator,
user: str,
password: str,
) -> None:
"""
Start the chatbot.
This purposefully does not call 'load_model()' so that you can load the
model in the repl and then restart the chatbot without unloading it.
"""
Biz.Log.setup()
xmpp = Mynion(user, password, model, tokenizer, generator)
xmpp.connect()
xmpp.process(forever=True) # type: ignore
if __name__ == "__main__":
if "test" in sys.argv:
print("pass: test: Biz/Mynion.py")
sys.exit(0)
else:
cli = argparse.ArgumentParser()
cli.add_argument("-u", "--user")
cli.add_argument("-p", "--password")
cli.add_argument("-m", "--model", choices=MY_MODELS)
args = cli.parse_args()
model, tokenizer, generator = load_model(args.model)
main(model, tokenizer, generator, args.user, args.password)
|