summaryrefslogtreecommitdiff
path: root/System/Random/Shuffle.hs
blob: 774e7b457b9f1ffa1a099d560d174202ca837760 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
{-# OPTIONS_GHC -funbox-strict-fields #-}

-- |
-- Module      : System.Random.Shuffle
-- Copyright   : (c) 2009 Oleg Kiselyov, Manlio Perillo
-- License     : BSD3 (see LICENSE file)
--
-- <http://okmij.org/ftp/Haskell/perfect-shuffle.txt>
--
--
-- Example:
--
--     import System.Random (newStdGen)
--     import System.Random.Shuffle (shuffle')
--
--     main = do
--       rng <- newStdGen
--       let xs = [1,2,3,4,5]
--       print $ shuffle' xs (length xs) rng
module System.Random.Shuffle
  ( shuffle,
    shuffle',
    shuffleM,
  )
where

import Control.Monad
  ( liftM,
    liftM2,
  )
import Control.Monad.Random
  ( MonadRandom,
    getRandomR,
  )
import Data.Function (fix)
import System.Random
  ( RandomGen,
    randomR,
  )

-- | A complete binary tree, of leaves and internal nodes.
-- Internal node: Node card l r
-- where card is the number of leaves under the node.
-- Invariant: card >=2. All internal tree nodes are always full.
data Tree a
  = Leaf !a
  | Node !Int !(Tree a) !(Tree a)
  deriving (Show)

-- | Convert a sequence (e1...en) to a complete binary tree
buildTree :: [a] -> Tree a
buildTree = (fix growLevel) . (map Leaf)
  where
    growLevel _ [node] = node
    growLevel self l = self $ inner l
    inner [] = []
    inner [e] = [e]
    inner (e1 : e2 : es) = e1 `seq` e2 `seq` (join e1 e2) : inner es
    join l@(Leaf _) r@(Leaf _) = Node 2 l r
    join l@(Node ct _ _) r@(Leaf _) = Node (ct + 1) l r
    join l@(Leaf _) r@(Node ct _ _) = Node (ct + 1) l r
    join l@(Node ctl _ _) r@(Node ctr _ _) = Node (ctl + ctr) l r

-- | Given a sequence (e1,...en) to shuffle, and a sequence
--  (r1,...r[n-1]) of numbers such that r[i] is an independent sample
--  from a uniform random distribution [0..n-i], compute the
--  corresponding permutation of the input sequence.
shuffle :: [a] -> [Int] -> [a]
shuffle elements = shuffleTree (buildTree elements)
  where
    shuffleTree (Leaf e) [] = [e]
    shuffleTree tree (r : rs) =
      let (b, rest) = extractTree r tree in b : (shuffleTree rest rs)
    shuffleTree _ _ = error "[shuffle] called with lists of different lengths"
    -- Extracts the n-th element from the tree and returns
    -- that element, paired with a tree with the element
    -- deleted.
    -- The function maintains the invariant of the completeness
    -- of the tree: all internal nodes are always full.
    extractTree 0 (Node _ (Leaf e) r) = (e, r)
    extractTree 1 (Node 2 (Leaf l) (Leaf r)) = (r, Leaf l)
    extractTree n (Node c (Leaf l) r) =
      let (e, r') = extractTree (n - 1) r in (e, Node (c - 1) (Leaf l) r')
    extractTree n (Node n' l (Leaf e)) | n + 1 == n' = (e, l)
    extractTree n (Node c l@(Node cl _ _) r)
      | n < cl =
        let (e, l') = extractTree n l in (e, Node (c - 1) l' r)
      | otherwise =
        let (e, r') = extractTree (n - cl) r in (e, Node (c - 1) l r')
    extractTree _ _ = error "[extractTree] impossible"

-- | Given a sequence (e1,...en) to shuffle, its length, and a random
--  generator, compute the corresponding permutation of the input
--  sequence.
shuffle' :: RandomGen gen => [a] -> Int -> gen -> [a]
shuffle' elements len = shuffle elements . rseq len
  where
    -- The sequence (r1,...r[n-1]) of numbers such that r[i] is an
    -- independent sample from a uniform random distribution
    -- [0..n-i]
    rseq :: RandomGen gen => Int -> gen -> [Int]
    rseq n = fst . unzip . rseq' (n - 1)
      where
        rseq' :: RandomGen gen => Int -> gen -> [(Int, gen)]
        rseq' 0 _ = []
        rseq' i gen = (j, gen) : rseq' (i - 1) gen'
          where
            (j, gen') = randomR (0, i) gen

-- | shuffle' wrapped in a random monad
shuffleM :: (MonadRandom m) => [a] -> m [a]
shuffleM elements
  | null elements = return []
  | otherwise = liftM (shuffle elements) (rseqM (length elements - 1))
  where
    rseqM :: (MonadRandom m) => Int -> m [Int]
    rseqM 0 = return []
    rseqM i = liftM2 (:) (getRandomR (0, i)) (rseqM (i - 1))